

Quality issues in biosimilars Some thoughts

Norbert Benda

Disclaimer:

Views expressed in this presentation are the author's personal views and not necessarily the views of BfArM

Statistical issues in quality assessments

- Comparison of empirical data from quality attributes
 - pre-and post-manufacturing change
 - comparison of a candidate biosimilar product to a reference medicinal product
 - comparison of a candidate generic product to the reference medicinal product
- Highly relevant in the development of biosimilars
 - approval based on a successful comparability exercise
 - clinical studies using therapeutic equivalence, PK and PD comparisons insufficient to conclude on biosimilarity
 - therapeutic equivalence trial often lack sensitivity
- Common/standardized requirements for all applicant needed

Statistical issues in quality assessments

- EMA Draft Reflection Paper on
 - statistical methodology for the comparative assessment of quality attributes in drug development
 - to be issued soon (2016)
 - reflection paper =
 - presenting issues
 - considerations on a proper statistical framework
 - streamlining terminology

Quality assessments of biosimilars

- CHMP Guideline on Similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues, rev.1 (EMA/CHMP/BWP/247713/ 2012)
 - "... analytical data submitted should be such that firm conclusions on the physicochemical and biological similarity between the reference medicinal product and the biosimilar can be made."
 - quality target product profile (QTPP) for biosimilar manufacturing
 - QTPP, corresponding to a set of quantitative ranges for key QA of the reference to guide the comparability exercise.
- demonstrate equivalence in contrast to non-inferiority
 - exemptions could be potential improvements in specific QAs (e.g. impurities) which might translate to safety advantages
- similarity on the quality level as the first important milestone in the stepwise development approach
 - followed by PK/PD and therapeutic equivalence
 - further aspect: bridging from non-EU reference

Statistical issues in quality assessments of biosimilars

- No agreed criteria or metric to compare test with reference
 - should be based on theoretical distributions not on samples
- Sampling issues
 - limited samples available from reference product
 - no pre-specification of sampling
 - no control on the selection of samples
- Statistical analysis issues
 - no pre-specification of the analysis yet ("study protocol")
 - no agreed criteria for similarity regarding the underlying distributions
 - no use of proper inferential methods
 - assessment often based on descriptive analyses only
 - not accounting for uncertainty and different sources of variability
 - usual sample sizes often do not allow for a powerful analysis

Statistical issues in quality assessments of biosimilars

- QA distribution of the reference as the basis of the comparability exercise
 - specification limits not known to the applicant
 - QA may change during the lifetime of the reference product
 - ranges may get narrower
 - limited number of reference samples available
- Proposals made by applicants
 - test samples within min and max of the reference
 - test samples within reference tolerance intervals
 - average equivalence
 - but using equivalence limits from (actual) reference data
 - x-sigma approaches

Statistical issues in quality assessments of biosimilars

Possible criteria

- $1-\alpha$ of test values within specification limits of the reference products
 - specification limits of the originator only known to regulator
 - limited information on the reference distribution
- bioequivalence like criteria based on the average equivalence testing of H_0 : $\mu_T/\mu_T \le c$ or $\mu_T/\mu_T \ge 1/c$ for some 0 < c < 1
 - specification of equivalence limit c crucial
 - consider reference variability?
 - interest rather on the comparison of distributions
- population equivalence?
 - comparing test and reference distribution
 - e.g. based on mean and variance
 - see e.g. draft FDA guideline on individual and population be (2000)
 - parametric approaches sensitive to distributional assumptions
 - current sample sizes insufficient (especially for non-parametric approaches)
 - narrower distributions acceptable?

Some issues related to the current proposals

- test samples within min and max of the reference product
 - min and max refer to a (limited) sample
 - assuming a (normal) distribution there is no theoretical min and max
 - conservative approach of approximating specification limits?
 - chances of success decrease with the number of test samples
- test samples within reference tolerance intervals
 - wider tolerance intervals with smaller sample sizes
 - conservative approach would rather use
 - lower limit of the $(1-\alpha)$ -quantile
 - upper limit of the α -quantile
 - tolerance interval does the contrary:
 - upper limit of the $(1-\alpha)$ -quantile
 - lower limit of the α -quantile

Some issues related to the current proposals

- x-sigma approaches
 - estimating reference intervals of the reference product
 - 2 σ = (allegedly) 95% reference interval
 - highly sensitive to distributional assumptions
 - does not account for sample uncertainty
- average equivalence using equivalence limits derived from (actual) reference data
 - not properly accounting for reference variability
 - no clear definition of the hypothesis to be rejected

Proper statistical solutions in quality assessments would involve

- Agreement on criteria related to the reference and test distributions
 - criteria to be based on theoretical distributions or distributional parameters
 - not on random samples
 - common understanding between statisticians and quality experts
- Development of statistical methods/hypothesis tests
 - inferential statistics to test hypotheses related to the agreed criteria
 - proper modelling of the different sources of variability
- Control of the sampling
 - how to deal with non-random sampling?
 - how to control for sample selection ?
- Concepts may differentiate
 - categorise QAs according to their criticality ("k-tier approach")

