

Science For A Better Life

How To Gamble If You Must: Early Clinical Statistics in Decision Processes

Disclaimer

The views expressed in this presentation is the personal view of the author, and do not necessarily represent the view of his employer

Agenda

- Introduction
- Three examples
 - Decision Making in PoC Studies
 - MAP approach in early clinical development
 - Bayesian dose-expression in biomarker analyses
- Discussion and Conclusions

Acknowledgments

- Heinz Delesen for work and slides on Bayesian Concepts for PoC Studies
- Rong Liu and Oliver Boix for further work on visualization for decision making
- Andreas Kaiser and Stefan Klein for work and slides on MAP approach
- Harry Mager and RCSS for discussions and continued appetite for innovation

Translational Assessment Aspects

Starting evidence11%

Human evidence 13%

Biomarkers for efficacy and 37% safety prediction

• PoM, PoP, **PoC** 13%

Personalized medicine aspects 8%

Wehling (2009). Assessing the translatability of drug projects: what needs to be scored to predict success? Nat Rev Drug Discov 8:541-546.

Biomarkers and personalized medicine aspects play an important role (~45%)

Biomarkers37%

Biomarker strategy (PoM, PoP, PoC)

• Disease subclassification and concentration of "responders" 3%

(personalized medicine aspects

Translation for Clinical Development

General

- The average rate of successful translation from animal models to clinical cancer trials is less than 8%. [1]
- "Only about a third of highly cited animal research translated at the level of human randomized trials" [2]
- Determination of scalability of results from research to clinical application
- Deal with differences between species
- Harmonization of experimental settings between clinical and research experiments
 - Ensure that the measurements in research are aligned with those in clinical development
- Harmonization of (statistical) methodology used in research and clinical development
- Communication between pre-clinical research and clinical development
 - Ensure knowledge transfer not only about the compound, but also about experimental setting –
 in both directions

^{1:} Mak, I, Evaniew, N, Ghert, M (2014). Lost in translation: animal models and clinical trials in cancer treatment. Am J Trans Res 6: 114-118

^{2:} Hackam DG, Redelmeier DA (2006) Translation of research evidence from animals to humans. JAMA 296: 1731–1732.

Statistics...

Statistical thinking and methods are an integral part of the decision processes, and form the indispensable basis of all drug discovery and development phases

Statistical Reasoning In Early Clinical Development and beyond!

Moving towards quantitative transition decisions

- Quantitative techniques help to consider different scenarios earlier in the project
 - Earlier accumulation of quantitative knowledge, increased use of estimates and specification of (un-)certainty allows better planning for future trials in early and late stage development
 - Clearer risk / benefit evaluation
 - Increased level of confidence
 - Guides translational efforts between preclinical and clinical phase as well as between different clinical phases of drug development
- More focus on estimation of effect sizes and variability in addition to statistical testing
- Increased use of Bayesian methods to quantify "risks and opportunities" for PoC decisions and beyond
- Requires implementation of up-to-date statistical techniques

Proof of Concept Studies And Bayes

Proof of concept (PoC) studies are generally dealing with one-sided hypotheses. Without loss of generality ('symmetry'), hypotheses of the form H_0 : $\theta \le \theta_0$ and H_1 : $\theta > \theta_0$ will be considered in the following.

The general idea is

- to have a 'Go' decision if the posterior probability of θ > θ₀ is greater or equal than some pre-specified probability p_U,
- to have a 'No Go' decision if the posterior probability of θ ≤ θ₀ is greater or equal than some pre-specified probability p_L,
- to have an 'indecisive' result if none of the two posterior probabilities is high enough.

$$P(\theta > \theta_0 \mid data) \begin{cases} \geq p_U \rightarrow H_1 \text{ ("Go")} \\ \leq 1 - p_L \rightarrow H_0 \text{ ("No Go")} \\ else \rightarrow \text{'indecisive'} \end{cases}$$

Bayes and PoC (2) Scenarios

Additional desirable (classical) features of such a decision rule are that

- one has an appropriate power of at least 1- β_U at a chosen value $\theta_U \in H_1$ for a 'Go' decision,
- and of at least 1- β_1 at $\theta_1 \in H_0$ for a 'No Go' decision.

These criteria determine the sample size n based on given values for p_U , θ_U , $1-\beta_U$, p_L , θ_L , $1-\beta_L$

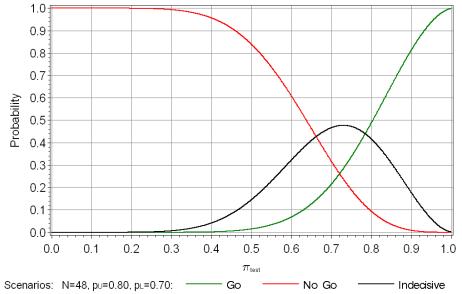
Four common scenarios are currently considered as a standard:

- Normally distributed data
 - One-sample scenario with non-informative priors $p(\mu, \sigma^2) \propto 1/\sigma^2$
 - 2-sample scenario with non-informative prior $p(\mu_1, \mu_2, \sigma^2) \propto 1/\sigma^2$
- Binomial distributed data
 - One-sample scenario with prior Beta(a,b)
 - 2-sample scenario with priors Beta(a_i,b_i), i =1,2

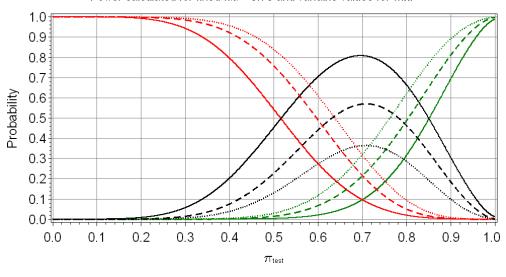
PoC Design Properties Visualization

Standard display of design properties

Probabilities of Go (green), No-Go (red), and indecisive result (black) for a fixed sample size N, fixed posterior probabilities, and priors $\pi_{\text{Test}} \sim \text{Beta}(1,1)$, $\pi_{\text{ref}} \sim \text{Beta}(1,1)$ Go if posterior probability $P(\pi_{\text{Test}} \geq \pi_{\text{ref}} | \text{data}) \geq p_{\text{L}}$, No Go if posterior probability $P(\pi_{\text{Test}} \leq \pi_{\text{ref}} | \text{data}) \geq p_{\text{L}}$. Power calculated for fixed $\pi_{\text{ref}} = 0.70$ and variable values for π_{test}



Probabilities of Go (green), No-Go (red), and indecisive result (black) for a fixed sample size of N=48, varying posterior probabilities, and priors $\pi_{\text{test}} \sim \text{Beta}(1,1)$, $\pi_{\text{ref}} \sim \text{Beta}(1,1)$ Go if posterior probability $P(\pi_{\text{test}} > \pi_{\text{ref}} | \text{data}) \ge p_{\cup}$, No Go if posterior probability $P(\pi_{\text{test}} > \pi_{\text{ref}} | \text{data}) \ge p_{\cup}$ Power calculated for fixed $\pi_{\text{ref}} = 0.70$ and variable values for π_{test}



Scenarios: p∪=0.90, p∟=0.90:

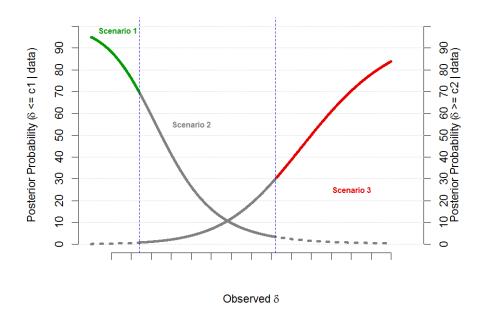
p∪=0.80, pL=0.80: p∪=0.70, pL=0.70: ----- Go

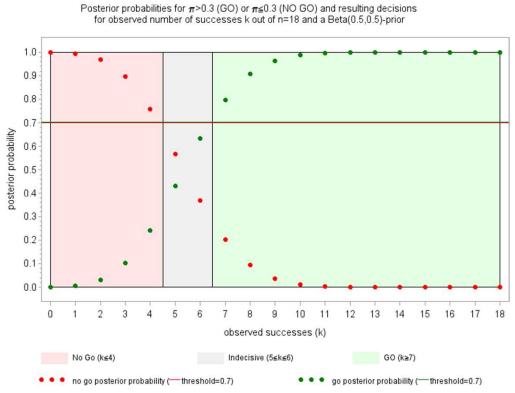
No Go
No Go

Indecisive

····· Indecisive

Decision Making Visualization





Meta-Analytic Predictive Approach Application

- Introduced formally by Neuenschwander et al. (2010), but similar methods were described already in Spiegelhalter et al. (2004)
- General idea
 - Starting point: mean and SD of historical studies
 - Variability of historical studies to be decomposed into two sources: between-trial and within-trial variability
 - Between trial variability: nuisance parameter, but to be taken into account
 - Perform a random effects meta analysis to assess sources of variability
 - Determine the predictive distribution for a new study and use it as a prior distribution

Application

- Currently applied routinely in several endpoints to assess prior distribution for (placebo or active) control arms using R programs
- Usage of Bayesian meta analytic approaches as well as ,normal' random effects meta analysis
- Main outcome parameter: Effective sample size

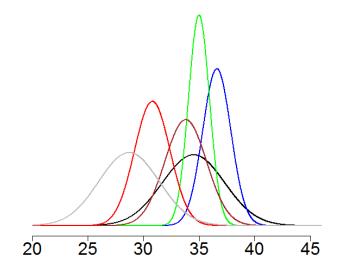
MAP: Dose Finding

Study Design:

- Phase IIb dose finding study:
 4 doses vs. active control, each 30 patients
- primary variable: approx. normally distributed)

Prior Information

- 6 studies with sample sizes between
 28 and 471 patients (overall: N=974)
- Effective sample size: 80 subjects
- Prior distribution for active control: normal distribution with μ=35 and σ=20, weighted as coming from 45 patients



Outcome

- Smaller than maximum ESS used in order to get substantial influence from actual study data.
- (Mean) Power increase of 10%
- FDA: "The proposed Bayesian statistical approach ... is acceptable"

Informative Priors Advantages and Challenges

Advantages

- Saving patients by up to 30% (depending of amount of incorporated information)
- Increase of power for decision making by up to 10%
- Higher precision in estimation or treatment effects and model parameters
- Increased numerical stability when estimating complex models
- Better assessment of current trial outcome in context of historical trials
- Better overview and more scientific discussion about realistic scenarios for trial planning
- Positive experience regarding interaction with health authorities

Challenges

- Systematic deviation between study data (measurement methods, assays, endpoint definitions, population, in- and exclusion criteria, disease categories, standard of care, ...)
- Between-trial variability
- Selection bias
- Amount of literature available for prior derivation
- Derivation of prior information for model parameters from published response data

MAP and Informative Priors

Pooling of historical data

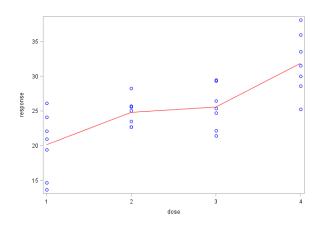
- Down weighting necessary to cope with between-trial variability
 - Enlarging the variability of prior distribution / power priors
 - Challenge: unknown parameter for down weighting
 - Robust priors (Challenge: unknown weight for mixing distribution)

Meta-Analytical Prediction

- Able to cope with between-trial variability
- Leads to a more agreeable prior
- Challenge: Low amount of extracted information, effective sample size often ≤ 10% of overall N
- Challenge: Improvement in information extraction possible?

Dose - Response / Expression

- Interest to classify potential biomarkers according to dose-expression profiles
 - Any relationship
 - Shape of profile
- Order constraints: higher (lower) expression as dose increases
 - Monotone increases / decreases
 - No parametric assumptions about dose expression profiles
 - Follow approach developed by Otava (2013-2014)



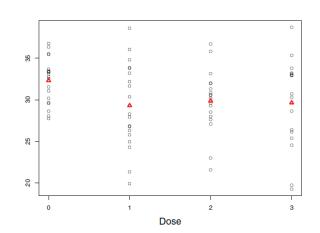
Otava M., Shkedy Z., Lin D., Göhlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose–Response Modeling Under Simple Order Restrictions Using Bayesian Variable Selection Methods. *Statistics in Biopharmaceutical Research*, 6:3, 252-262. Otava M. (2014). Bayesian variable selection in dose-response relationship concept. International Biometric Conference, Florence. Otava M. (2013). Bayesian Variable Selection Method for Modeling Dose-Response Microarray Data Under Simple Order Restrictions. Bayes2013, Rotterdam.

B A BAYER E R

Monotone Dose-Response Example

Order-restricted alternative as an example:

- ANOVA model: $Y_{ij}=\mu_i+\epsilon_{ij}, \epsilon_{ij}\sim N(0,\sigma^2), i=0,...3, j=1,..., n_i$
- H_0 : $\mu_0 = \mu_1 = \mu_2 = \mu_3$ versus H_{down} : $\mu_0 \ge \mu_1 \ge \mu_2 \ge \mu_3$ with at least one strict inequality



- Decompose into 2^K 1 sub-alternatives
- K=3: 7 sub-alternatives (downward trend!)

$$H_{1}^{3} = \bigcup_{k=1}^{7} H_{1,k}^{3} \quad \text{where} \quad H_{1,1}^{3} : \mu_{0} > \mu_{1} = \mu_{2} = \mu_{3} \quad \text{(0-null model)}$$

$$H_{1,2}^{3} : \mu_{0} = \mu_{1} > \mu_{2} = \mu_{3} \quad \text{(3)}$$

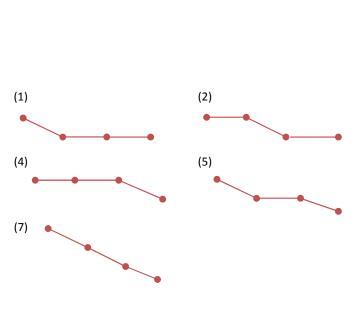
$$H_{1,3}^{3} : \mu_{0} > \mu_{1} > \mu_{2} = \mu_{3} \quad \text{(3)}$$

$$H_{1,4}^{3} : \mu_{0} = \mu_{1} = \mu_{2} > \mu_{3} \quad \text{(6)}$$

$$H_{1,5}^{3} : \mu_{0} > \mu_{1} = \mu_{2} > \mu_{3} \quad \text{(6)}$$

$$H_{1,6}^{3} : \mu_{0} = \mu_{1} > \mu_{2} > \mu_{3} \quad \text{(6)}$$

$$H_{1,7}^{3} : \mu_{0} > \mu_{1} > \mu_{2} > \mu_{3}$$



B A BAYER E R

Example: Biomarker

Assume possible downward trend.

Re-parametrisation:

$$\mu_{i} = \begin{cases} \mu_{0}, & i = 0 \\ \mu_{0} - \sum_{j=1}^{i} I_{j} \beta_{j}, & i = 1, ..., K \text{ with indicator variable } I_{j} \text{ and } \beta_{j} \ge 0 \end{cases}$$

Use priors and hyperpriors as discussed by Otava

Hypothesis/Sub - alternative	$(\mathbf{I}_1,\mathbf{I}_2,\mathbf{I}_3)$	$g = \sum_{j=1}^{3} I_1 2^{j-1}$
$H_0^3 : \mu_0 = \mu_1 = \mu_2 = \mu_3$	(0, 0, 0)	0
$H_{1,1}^3: \mu_0 < \mu_1 = \mu_2 = \mu_3$	(1, 0, 0)	1
$H_{1,2}^3: \mu_0 = \mu_1 < \mu_2 = \mu_3$	(0,1,0)	2
$H_{1,3}^3: \mu_0 < \mu_1 < \mu_2 = \mu_3$	(1,1,0)	3
$H_{1,4}^3: \mu_0 = \mu_1 = \mu_2 < \mu_3$	(0,0,1)	4
$H_{1,5}^3: \mu_0 < \mu_1 = \mu_2 < \mu_3$	(1,0,1)	5
$H_{1,6}^3: \mu_0 = \mu_1 < \mu_2 < \mu_3$	(0,1,1)	6
$H_{1,7}^3: \mu_0 < \mu_1 < \mu_2 < \mu_3$	(1,1,1)	7

Otava M., Shkedy Z., Lin D., Göhlmann H.W.H., Bijnens L., Talloen W., Kasim A. (2014). Dose–Response Modeling Under Simple Order Restrictions Using Bayesian Variable Selection Methods. *Statistics in Biopharmaceutical Research*, 6:3, 252-262.

Otava M. (2014). Bayesian variable selection in dose-response relationship concept. International Biometric Conference, Florence.

Otava M. (2013). Bayesian Variable Selection Method for Modeling Dose-Response Microarray Data Under Simple Order Restrictions. Bayes2013, Rotterdam.

Priors and Hyperpriors

As priors, we have

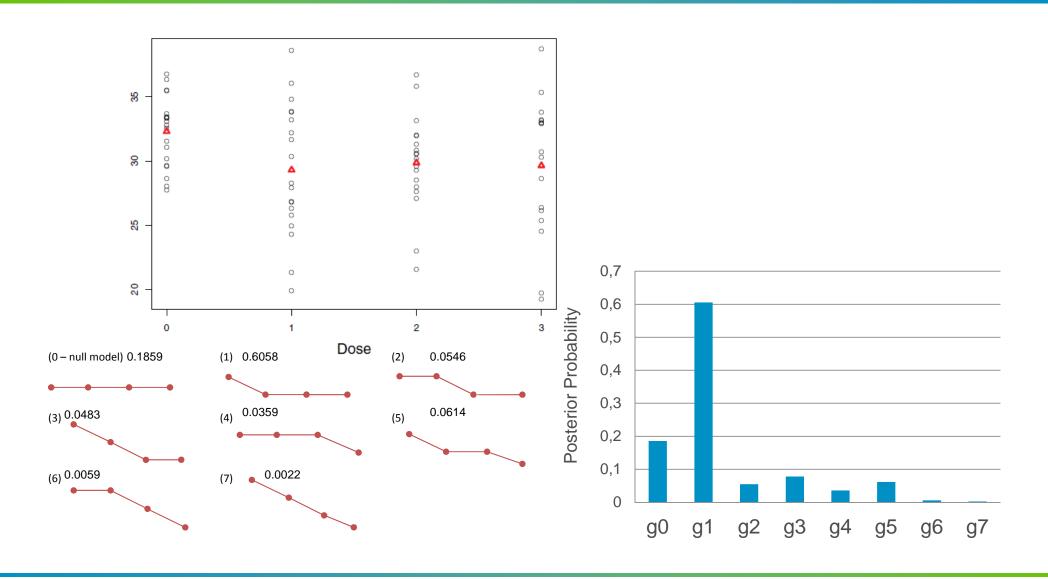
- $\mu_0 \sim N(\eta_0, \sigma_0^2)$
- $\beta_i \sim N(\eta_{\beta_i}, \sigma_{\beta_i}^2)I(0, A)$; A denotes the expected difference in the response
- $I_i \sim Bernoulli(\pi_i)$

And hyperpriors

- $\pi_i \sim Uniform(0,1)$
- $\eta_0, \eta_{\beta_i} \sim N(0, 10^6)$
- σ_0^2 , $\sigma_{\beta_i}^2 \sim i\Gamma(10^{-3}, 10^{-3})$

If we now define $g = \sum_{i=1}^{K} I_i 2^{i-1}$, the posterior distribution of **g** describes the distribution of the monotone dose-response shapes.

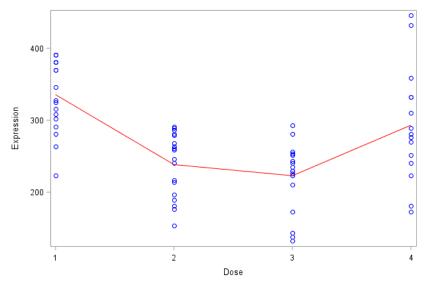
Results



B A BAYER E R

Discussion of Methods

- Computationally expensive in SAS
- Effect of truncation:
 - $\beta_i \sim N(\eta_{\beta_i}, \sigma_{\beta_i}^2)I(0, A)$; A denotes the expected difference in the response
 - Empirical Bayes?
- Can (easily) be extended to be used with correlated data:
 - Only compound symmetry in SAS PROC MCMC
- Down-turn / Up-turn protection is needed



Implementation

- PoC Studies are developed and analyzed using Bayesian methods
 - Unless clear scientific or regulatory reasons speak against this
- SAS Macros for 4 most frequent planning scenarios in PoC studies, covering:
 - Sample size determination
 - Design properties
 - Decision making
- Training of early clinical development function
 - Standard terminology
 - Standard summary of prior elicitation
 - Standard display of trial characteristics
- Increasingly used in other areas
 - Biomarkers / Genomics
 - Research / Preclinical Development

Summary and Discussion

- Increased used of advanced statistical methods in early clinical development
 - Increasing use of Bayesian methodology in early clinical development
 - Discussions started around 10 years ago
 - Focus: early clinical development
 - Bayesian level of proof as one decision metric in PoC
- Rather high acceptance of Bayesian methods in Early Clinical Development
 - Supported by head of Clinical Sciences
 - Build on this also for early biomarker development / biomarker detection
- Standard "displays" / methods to facilitate understanding
- High level of interaction needed (specification of questions, determination of priors, ...)
- Highly interdisciplinary
 - Quantitative functions ("mathematical functions")
 - Clinical and preclinical functions

The business of the statistician is to catalyze the scientific learning process.

- George Box

Science For A Better Life

Thank you!