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• Starting evidence 11%

• Human evidence 13%

• Biomarkers for efficacy and 37%
safety prediction

• PoM, PoP, PoC 13%

• Personalized medicine aspects 8%

• Biomarkers and personalized medicine aspects play an important role (~45%)

• Biomarkers 37%

• Biomarker strategy (PoM, PoP, PoC) 5%

• Disease subclassification and concentration of “responders”  3%
(personalized medicine aspects

Translational Assessment Aspects
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Translation for Clinical Development

General

• The average rate of successful translation from animal models to clinical cancer trials is 
less than 8%. [1]

• “Only about a third of highly cited animal research translated at the level of human 
randomized trials” [2]

• Determination of scalability of results from research to clinical application
• Deal with differences between species
• Harmonization of experimental settings between clinical and research experiments

• Ensure that the measurements in research are aligned with those in clinical development

• Harmonization of (statistical) methodology used in research and clinical development
• Communication between pre-clinical research and clinical development

• Ensure knowledge transfer – not only about the compound, but also about experimental setting –
in both directions

1: Mak, I, Evaniew, N, Ghert, M (2014). Lost in translation: animal models and clinical trials in cancer treatment. Am J Trans Res 6: 114-118
2: Hackam DG, Redelmeier DA (2006) Translation of research evidence from animals to humans. JAMA 296: 1731–1732. 
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Statistics…

• Vonk - Quantitative Decision Making •  EFSPI, 6.10.2017

Statistical thinking and methods
are an integral part of the decision processes,

and form the indispensable basis
of all drug discovery and development phases
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In Early Clinical Development and beyond!

Statistical Reasoning

Moving towards quantitative transition decisions

• Quantitative techniques help to consider different scenarios earlier in the project
• Earlier accumulation of quantitative knowledge, increased use of estimates and 

specification of (un-)certainty allows better planning for future trials in early and late 
stage development

• Clearer risk / benefit evaluation
• Increased level of confidence
• Guides translational efforts between preclinical and clinical phase as well as between 

different clinical phases of drug development

• More focus on estimation of effect sizes and variability in addition to statistical 
testing

• Increased use of Bayesian methods to quantify “risks and opportunities” for PoC
decisions and beyond

• Requires implementation of up-to-date statistical techniques
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And Bayes
Proof of Concept Studies

Proof of concept (PoC) studies are generally dealing with one-sided hypotheses. 
Without loss of generality (‘symmetry’), hypotheses of the form H0: θ ≤ θ0 and 
H1: θ > θ0 will be considered in the following.

The general idea is

• to have a ‘Go’ decision if the posterior probability of θ > θ0 is greater or equal 
than some pre-specified probability pU,

• to have a ‘No Go’ decision if the posterior probability of θ ≤ θ0 is greater or equal 
than some pre-specified probability pL,

• to have an ‘indecisive’ result if none of the two posterior probabilities is high 
enough.
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Scenarios
Bayes and PoC (2)

Additional desirable (classical) features of such a decision rule are that 

• one has an appropriate power of at least 1-βU at a chosen value θU ∈H1 for a 
‘Go’ decision,

• and of at least 1-βL at θL ∈H0 for a ‘No Go’ decision.

These criteria determine the sample size n based on given values for pU, θU,1-βU, 
pL, θL,1-βL

Four common scenarios are currently considered as a standard:

• Normally distributed data
• One-sample scenario with non-informative priors
• 2-sample scenario with non-informative prior

• Binomial distributed data
• One-sample scenario with prior Beta(a,b)

• 2-sample scenario with priors Beta(ai,bi), i =1,2
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Visualization
PoC Design Properties

• Standard display of design properties
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Visualization
Decision Making
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Application
Meta-Analytic Predictive Approach

• Introduced formally by Neuenschwander et al. (2010), but similar methods were 
described already in Spiegelhalter et al. (2004)

• General idea
• Starting point: mean and SD of historical studies
• Variability of historical studies to be decomposed into two sources: between-trial and 

within-trial variability
• Between trial variability: nuisance parameter, but to be taken into account
• Perform a random effects meta analysis  to assess sources of variability
• Determine the predictive distribution for a new study and use it as a prior distribution

• Application
• Currently applied routinely in several endpoints to assess prior distribution for (placebo 

or active) control arms using R programs
• Usage of Bayesian meta analytic approaches as well as ‚normal‘ random effects meta 

analysis
• Main outcome parameter: Effective sample size
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MAP: Dose Finding
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• Study Design:
• Phase IIb dose finding study: 

4 doses vs. active control, each 30 
patients

• primary variable: approx. normally 
distributed)

• Prior Information
• 6 studies with sample sizes between 

28 and 471 patients (overall: N=974)
• Effective sample size: 80 subjects
• Prior distribution for active control:  

normal distribution with  µ=35  and 
σ=20,  weighted as coming from 45 
patients

• Outcome
• Smaller than maximum ESS used in 

order to get substantial influence from 
actual study data.

• (Mean) Power increase of 10%
• FDA: “The proposed Bayesian 

statistical approach … is acceptable”
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Advantages and Challenges
Informative Priors

• Advantages
• Saving patients by up to 30% (depending of amount of incorporated information)
• Increase of power for decision making by up to 10%
• Higher precision in estimation or treatment effects and model parameters
• Increased numerical stability when estimating complex models
• Better assessment of current trial outcome in context of historical trials
• Better overview and more scientific discussion about realistic scenarios for trial 

planning
• Positive experience regarding interaction with health authorities

• Challenges
• Systematic deviation between study data (measurement methods, assays, endpoint 

definitions, population, in- and exclusion criteria, disease categories, standard of care, 
…)

• Between-trial variability
• Selection bias
• Amount of literature available for prior derivation
• Derivation of prior information for model parameters from published response data
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Pooling of historical data

• Down weighting necessary to cope with between-trial variability

• Enlarging the variability of prior distribution / power priors
• Challenge: unknown parameter for down weighting
• Robust priors (Challenge: unknown weight for mixing distribution)

Meta-Analytical Prediction

• Able to cope with between-trial variability

• Leads to a more agreeable prior 

• Challenge: Low amount of extracted information, effective sample size often  ≤ 
10% of overall N

• Challenge: Improvement in information extraction possible?

MAP and Informative Priors
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• Interest to classify potential biomarkers according to dose-expression profiles

• Any relationship

• Shape of profile

• Order constraints: higher (lower) expression as dose increases

• Monotone increases / decreases

• No parametric assumptions about dose – expression profiles

• Follow approach developed by Otava (2013-2014)

Dose – Response / Expression
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Otava M. (2014). Bayesian variable selection in dose-response relationship concept. International Biometric Conference, Florence.
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Order-restricted alternative as an example:

• ANOVA model: Yij=µi + εij, εij~N(0,σ²), i=0,…3, j=1,…, ni

• H0: µ0 = µ1 = µ2 = µ3 versus
Hdown: µ0 ≥ µ1 ≥ µ2 ≥ µ3 with at least one strict inequality

• Decompose into 2K – 1 sub-alternatives

• K=3: 7 sub-alternatives (downward trend!)

Monotone Dose-Response Example
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Assume possible downward trend. 

• Re-parametrisation:

• Use priors and hyperpriors as discussed by Otava

Example: Biomarker
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As priors, we have

• ��~�(��, ��
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	 � 0, � ;	 A denotes the expected difference in the response
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And hyperpriors
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If we now define % = ∑ ��2
�#)*

�+) , the posterior distribution of g describes the 
distribution of the monotone dose-response shapes.

Priors and Hyperpriors
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Results
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• Computationally expensive in SAS

• Effect of truncation: 

• ��~� �
� , �
�
	 � 0, � ;	 A denotes the expected difference in the response

• Empirical Bayes?

• Can (easily) be extended to be used with correlated data: 

• Only compound symmetry in SAS PROC MCMC

• Down-turn / Up-turn protection is needed

Discussion of Methods
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• PoC Studies are developed and analyzed using Bayesian methods

• Unless clear scientific or regulatory reasons speak against this

• SAS Macros for 4 most frequent planning scenarios in PoC studies, covering:
• Sample size determination
• Design properties
• Decision making

• Training of early clinical development function
• Standard terminology
• Standard summary of prior elicitation
• Standard display of trial characteristics

• Increasingly used in other areas
• Biomarkers / Genomics
• Research / Preclinical Development

Implementation
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• Increased used of advanced statistical methods in early clinical development
• Increasing use of Bayesian methodology in early clinical development
• Discussions started around 10 years ago
• Focus: early clinical development
• Bayesian level of proof as one decision metric in PoC

• Rather high acceptance of Bayesian methods in Early Clinical Development
• Supported by head of Clinical Sciences
• Build on this also for early biomarker development / biomarker detection

• Standard “displays” / methods to facilitate understanding

• High level of interaction needed
(specification of questions, determination of priors, … )

• Highly interdisciplinary

• Quantitative functions (“mathematical functions”)
• Clinical and preclinical functions

Summary and Discussion
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The business of the statistician is to catalyze the 
scientific learning process.

- George Box
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Thank you!


