On the road to clinical extrapolation Kristina Weber, Armin Koch Hannover Medical School ## **Application of Bayesian methodology** - Often proposed for situations with limited options to recruit patients into studies (rare disease, pediatric trials) - or potential limited need (extrapolation from adult to pediatric indications) - Use of "expert opinion" to interlink pathophysiological or pharmacological plausibility assumptions with the response parameter - In rare disease some pre-specified expert opinion may be the only option to reduce the burden of evidence needed for "proof" of efficacy - In extrapolation, however, data in adults are available to inform about prior knowledge regarding a drug in a certain context (e.g. immunosuppression in organ transplantation) #### **Bayesian extrapolation (and regulatory context)** #### Tradition in drug regulation: - Self standing data-based decision making - Primary use of own data (class is of secondary interest) - Pre-specified decision making process #### Thus: - In case data are available, preference is given to data (and not to expert opinion) - In case information is borrowed, then this should be primarily "own" information - Conclusions should be non-trivial (e.g. the prior completely determines the evaluation of the new experiment) #### **Paediatric extrapolation** #### In contrast to other situations: - Available data have been sufficient for licensing a new drug - PK/PD and mechanism of action are usually well understood - PK/PD in paediatric patients available (or can be generated "easily") #### Why then clinical data in paediatric patients? - Low belief that similar PK/PD leads to the same clinical efficacy - No reliable PD endpoint - Puzzling outcome in previous steps of the extrapolation exercise Drug regulation clarifies the need-to-knows and not the nice-to-knows. To have "at least some paediatric data" would be neither ethical nor scientific as a motivation to do a human experiment. #### Regulatory question Going for an extrapolation exercise assumes an agreement that there is no need for formal (self-standing) proof of efficacy in the paediatric population. Instead, the following questions need to be addressed: - A. Which paediatric experiment is needed to detect with good probability relevant deviations from adult expectations regarding the treatment effect? - B. How to define and assess "relevant deviations"? To be presented here: Play-games with differing amounts of information (e.g. a lot of information in adults and only a few children) # Play-game: EVR case-study Adult studies in de novo kidney transplants with EVR (NIM(log(OR)): 0.54) | study | EVR events/treated | MPA
events/treated | Log(OR
95% CI
P-value | |------------------------------|--------------------|-----------------------|----------------------------------| | B201
Vitko 2004 | 58/194
(29.9%) | 61/196
(31.1%) | -0.05
(-0.48, 0.38)
0.793 | | B251
Lorber 2005 | 48/193
(24.9%) | 54/196
(27.6%) | -0.13
(-0.58, 0.32)
0.548 | | A2309
Tedesco
2010 | 70/277
(25.3%) | 67/277
(24.2%) | 0.06
(-0.33, 0.45)
0.844 | | Meta-Analysis
(FEM & REM) | | | -0.035
(-0.28, 0.21)
0.776 | Studies investigated different comparators, but demonstration of noninferiority was felt relevant in all instances. B201 (Vitko 2004): **CS+CsA(s)+EVR vs. CS+CsA(s)+MMF,**B251 (Lorber 2005): **CS+CsA(s)+EVR vs. CS+CsA(s)+MMF,** A2309 (Tedesco 2010): CS+B+CsA(r)+EVR vs. CS+B+CsA(s)+MPA. # Pay-game: EVR case-study **Aim**: extrapolation to the paediatric population with one clinical study Investigation of two different scenarios: | study | EVR events/treated | MPA
events/treated | log (OR)
95% CI
P-value | |------------|--------------------|-----------------------|-------------------------------| | Scenario 1 | 16/53
30.2% | 16/53
30.2% | 0.00
(-0.83; 0.83)
1.00 | | Scenario 2 | 22/53
41.5% | 16/53
30.2% | 0.50
(-0.31; 1.30)
0.33 | | | Experim | ental | Contr | ol | | Odds Ratio | | Odds Ratio | | |--|-----------|----------|-----------------|-------|--------|-------------------|---|---|-------------| | Study or Subgroup | Events | Total | Events | Total | Weight | IV, Fixed, 95% CI | Year | IV, Fixed, 95% CI | | | Vitko 2004 | 58 | 194 | 61 | 196 | 31.7% | 0.94 [0.61, 1.45] | 2004 | - | | | Lorber 2005 | 48 | 193 | 54 | 196 | 28.8% | 0.87 [0.55, 1.37] | 2005 | | | | Tedesco 2010 | 70 | 277 | 67 | 277 | 39.5% | 1.06 [0.72, 1.56] | 2010 | - | | | Total (95% CI) | | 664 | | 669 | 100.0% | 0.97 [0.76, 1.23] | | | | | Total events | 176 | | 182 | | | | | | | | Heterogeneity: Chi²= | 0.44, df= | 2(P = 0) | $.80); I^2 = I$ | 0% | | | | | | | Test for overall effect: Z = 0.28 (P = 0.78) | | | | | | | 0.5 0.7 1 1.5 Favours (experimental) Favours (control) | 2 | | # Approaches to a summary evaluation of individual sources of information #### Frequentist Meta-Analysis Joint analysis of existing and new trials (eventually looking into heterogeneity) in a fixed (FEM) or a random (REM) effects model #### Bayesian Meta-Analysis Joint analysis of existing and new trial in a FEM or a REM (Smith et al., 1995) #### Bayesian meta-analytic predictive approach Analysis of a new trial "in light of al ready existing trials in a FEM or a REM (Viele et al., 2014 and Spiegelhalter et al., 2004) # **Results with Scenario 1 (assumed homogeneity)** | Study | | log OR | | | | | | | |----------------------------|-------|--------|-------------------------------|----|------|-------------|-----|---| | adult MA | | -0.03 | | | - | - | | | | Scenario 1 | | 0 | | - | | - | | | | Analysis method | Prior | log OR | Heterogeneity | | | | | | | F FE MA | | -0.03 | q=0.44, $\hat{\tau}^2$ = 0.00 | | - | - | | | | F RE MA | | -0.03 | | | - | - | | | | B FE MA | | -0.04 | | | - | - | | | | B RE MA | | | | | | | | | | prior: $E(\tau^2) = 0.33$ | | -0.05 | $\hat{\tau}^2 = 0.31$ | | | - | | | | prior: $E(\tau^2) = 0.14$ | | -0.04 | $\hat{\tau}^2 = 0.14$ | | | - | | | | prior: $E(\tau^2) = 0.001$ | | -0.05 | $\hat{\tau}^2 = 0.001$ | | _ | | | | | B FE MAP | adult | -0.03 | | | - | | | | | B RE MAP | | | | | | | | | | prior: $E(\tau^2) = 0.33$ | adult | -0.02 | $\hat{\tau}^2 = 0.42$ | | | | | - | | prior: $E(\tau^2) = 0.14$ | adult | -0.03 | $^{^2}_{\tau} = 0.16$ | | | - | | | | prior: $E(\tau^2) = 0.001$ | adult | -0.03 | $\hat{\tau}^2 = 0.001$ | | - | - | | | | | | | | | | | ľ | | | | | | | -1 | -0.5 | 0
log OR | 0.5 | 1 | # **Results with Scenario 2 (log OR = 0.50, at the margin)** | Study | | log OR | | | | | | | |----------------------------|-------|--------|-----------------------------------|------|---|---------------|---|-----| | adult MA | | -0.04 | | _ | - | _ | | | | Scenario 2 | | 0.5 | | _ | | - | | _ | | Analysis method | Prior | log OR | Heterogeneity | | | | | | | F FE MA | | 0.01 | $q=0.44, \mathring{\tau}^2=0.00$ | | | _ | | | | F RE MA | | 0.01 | | | | _ | | | | B FE MA | | 0 | | | - | _ | | | | B RE MA | | | | | | | | | | prior: $E(\tau^2) = 0.33$ | | 0.05 | $\hat{\tau}^2 = 0.32$ | | - | | | | | prior: $E(\tau^2) = 0.14$ | | 0.04 | ${\hat{\tau}}^2 = 0.15$ | | - | | | | | prior: $E(\tau^2) = 0.001$ | | -0.01 | $^{^{^{2}}}_{\tau}$ = 0.001 | | - | _ | | | | B FE MAP | adult | 0.01 | | | _ | _ | | | | B RE MAP | | | | | | | | | | prior: $E(\tau^2) = 0.33$ | adult | 0.38 | $\hat{\tau}^2 = 0.43$ | _ | | - | | | | prior: $E(\tau^2) = 0.14$ | adult | 0.31 | $\hat{\tau}^2 = 0.16$ | _ | | - | | | | prior: $E(\tau^2) = 0.001$ | adult | 0.01 | $\hat{\tau}^2 = 0.001$ | | - | _ | | | | | | | | | | T | ı | | | | | | | -0.5 | 0 | 0.5
log OR | 1 | 1.5 | #### **Assessment of the exemplary analyses** Many approaches and ... - ... many different conclusions about the same data possible - If meta-analysis is used as a tool to arrive at an overall conclusion, no difference between a frequentist approach or a Bayesian approach can be detected: actually summary estimates will always be dominated by adult data. - Using the predictive approach might allow that the pediatric data stand against the adult data (in case a prior is chosen that will allow for heterogeneity), however then even in case of homogeneity nothing can be concluded with the current sample-size. - If heterogeneity is restricted, the impact of the adult data is increased (similar to frequentist MA). - Precise pre-specification of the assumptions is required / recommended. # "Simulation" to reduce optimism Some random draws under the assumption of homogeneity; | Analysis method | prior | log OR | est. Heterogeneity | | |-----------------------------------|-------|--------|--------------------|--------------------------| | B RE MA prior: $E(\tau^2) = 0.33$ | adult | 0.26 | 0.43 | - | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | 0.49 | 0.44 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | -0.06 | 0.41 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | 0.06 | 0.42 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | -0.26 | 0.42 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | -0.2 | 0.41 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | 0.75 | 0.48 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | -0.98 | 0.5 | | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | -0.07 | 0.41 | - | | B RE MA prior: $E(\tau^2) = 0.33$ | adult | 0.05 | 0.42 | | | | | | | | | | | | | -1.5 -1 -0.5 0 0.5 1 1.5 | | | | | | log OR | Extrapolation ↔ self standing evidence - Data-based extrapolation is possible but... - ... all methods implicitly reduce the amount of data needed for a formal decision making process if the focus lays only on the final estimate (and CI) - Clinical extrapolation could be seen as a descriptive exercise (w/o need for confirmatory decision making), but how then to justify sample-size? - One may decide that no pediatric clinical trial is needed (PK or PK/PD is sufficient), but if one is done, it needs to have an objective to be achieved. Idea exists that extrapolation is an iterative process (model \rightarrow collect data \rightarrow check fit \rightarrow evaluate \rightarrow eventually redo) - This may be feasible in PK/PD in general, but may not be true in the field of extrapolation: - All knowledge has been used-up for the best prediction of pediatric outcome. - If then reality doesn't fit our plans isn't this evidence that extrapolation from adult to pediatric is (too) limited / not possible? - Re-do in the world of clinical trials would be extremely costly #### What could be done? - A lot of different methods (e.g. relax T1E, increase NI-margin, meta-analyze, pep-up your control group or just omit it). - Methodological problems exist, but not in the field of whether Bayesian or Frequentist statistics are more appropriate. - It is more important to precisely define the research question and get the metrics clear to make maximum out of the fact that formal proof of efficacy in adults is already available. - A check for consistency should be implemented/possible - The value of confirmatory (pre-planned) decision making: - a chance to discuss the required amount of information upfront - avoid unethical / costly collection of data that is difficult to use Some recommendations open for discussion: - → Avoiding "overweight" in the MA-approach with content-wise selection of adult patients (e.g. only use data from young adults to weigh in for the assessment of adolescent pediatric patients) - → Be precise about the prior information and its possible impact - → Change of emphasis from "Does it work?" towards "Is there evidence for differential effects?" Thank you for your attention! #### References Smith, T.C. *et al.* Bayesian approaches to random-effects meta-analysis: a comparative study. *Statistics in medicine*, 1995, 14 (24), pp. 2685–2699. Viele, K. et al. Use of historical control data for assessing treatment effects in clinical trials. Pharmaceutical Statistics, 2013, (August 2013). Spiegelhalter, D.J. et al. Bayesian Approaches to Clinical Trials and Helath-Care Evaluation. Wiley, 2004. Vitko, S. et al. Everolimus (Certican) 12-month safety and efficacy versus mycophenolate mofetil in de novo renal transplant recipients. *Transplantation*, 2004, 78 (10), pp. 1532–40. Tedesco Silva, H. jr *et al.* Everolimus plus reduced-exposure CsA versus mycophenolic acid plus standard-exposure CsA in renal-transplant recipients. *American Journal of Transplantation*, 2010, 10 (6), pp. 1401–1413. Lorber, M. *et al.* Everolimus versus mycophenolate mofetil in the prevention of rejection in de novo renal transplant recipients: a 3-year randomized, multicenter, phase III study. *Transplantation*, 2005, 80 (2), pp. 244–52.