

www.pei.de

\\ Use of RWD in genetherapy approvals \\ axicabtagene ciloleucel (Yescarta)

PD Dr. Benjamin Hofner Head of Section Biostatistics

Disclaimer:

The following slides represent my personal views and do not necessarily reflect the views of the Paul-Ehrlich-Institut or any other European agency.

www.pei.de

\\ Use of historic controls in gene-therapy approvals \\ axicabtagene ciloleucel (Yescarta)

PD Dr. Benjamin Hofner Head of Section Biostatistics

Disclaimer:

The following slides represent my personal views and do not necessarily reflect the views of the Paul-Ehrlich-Institut or any other European agency.

Sources

- European Public Assessment Report (EPAR) for YESCARTA (EMA/481168/2018)
- Papadouli, Mueller-Berghaus, Beuneu et al. "The European Medicines
 Agency review of axicabtagene ciloleucel (Yescarta) for the treatment of
 diffuse large B-cell lymphoma (DLBCL)", Submitted to The Oncologist.

Background

- Axicabtagene-ciloleucel (axi-cel)
 - CAR-T cell therapy for treatment of DLBCL (diffuse large B-cell lymphoma) after two or more lines of systemic therapy

Treatment

- Leukapheresis to collect patient's own T-cells (> autologous treatment)
- Ex vivo genetic modification of the T-cells to target B cell specific antigen (CD19)
- Infusion of CAR-T cells after lymphodepleting chemotherapy

Procedure

- Initially accelerated procedure, reverted to standard TT after first round
- Two rounds of questions (LoQ, LoOI)
- CAT/CHMP adopted a positive opinion in June 2018

Pivotal study

- ZUMA-1
 - Prospective, single-arm Phase 2 trial
 - Enrolled patients:
 N = 111
 - Patients treated with axi-cel: N = 101
 - Median time from leukapheresis to infusion was 24 days (range: 16 to 73 days)
 - Pre-specified historic control rate (ORR):

 H_0 : ORR $\leq 20\%$ H_1 : ORR > 20%

- ¹ Both deaths due to progressive disease
- ² Death due to tumor lysis syndrome, deemed related to conditioning chemotherapy

Supportive study

- SCHOLAR-1
 - Retrospective historic control
 - Based on 4 studies
 - 2 randomized clinical trials (follow up data after progression)
 - 2 institutional databases from academia
 - Partially unclear follow-up routines
 - Key eligibility criteria:
 - chemo-refractory aggressive B-cell Non-Hodgkin-Lymphoma (DLBCL, TFL, PMBCL)
 - no history of allogeneic SCT
 - Sample size was "variable":

■ Enrolled: N = 861

Scholar-1 evaluable set: N = 636

RR-evaluable set:
N = 523

Survival-evaluable set: N = 603

RR/survival-evaluable set: N = 513

Discussions during assessment

- Choice of analysis set
 - Company focused on mITT (all treated patients)
 - CAT/CHMP has a strong preference for ITT (all enrolled patients) as only this allows a suitable comparison to control
- Choice of relevant endpoints
 - Primary endpoint: ORR
 - Considered as indicator of tumour response but no patient relevant outcome
 - Company focused on local investigator assessment
 - > CAT/CHMP focused on **central review** for better standardization
 - Important secondary endpoints:
 - CR rate, DoR, OS
 - CAT/CHMP laid strong focus on CR rate and OS (supported by ongoing response)
 - General discussion on outstanding effects, magnitude of bias, ...
 - Results need to be outstanding in SATs

Discussions during assessment

- Choice of relevant historic control
 - Checking comparability of patient populations and sensitivity of results crucial
 - > Patient-level data was requested by CAT/CHMP to allow a better understanding
 - Same / similar follow up routine
 - visit schedules, standardized definition of endpoints, ...
 - Data sources (registries, EHRs, RCTs, ...)
 - Company presented a mixture of data sources
 - CAT/CHMP mainly focused on the two RCTs
 - Changes in response to standard of care over time
 - Difficult to assess based on limited data

Main results

	ZUMA-1 All leukapheresed (ITT, N = 111)		SCHOLAR-1*
	12-month analysis	24-month analysis	
ORR (%) [95% CI]	66 (56, 75)	68 (58, 76)	26 (21, 31)
CR (%)	47	50	7
12 month OS (%) [95% CI]	59.3 (49.6, 67.8)	59.5 (49.7, 67.9)	28
24 month OS (%) [95% CI]	N/A	47.7 (38.2, 56.7)	20

^{*} Combined results of all 4 data sources with varying analysis sets

- Refinement of control ORR (pre-specified as 20%) based on SCHOLAR-1
 - RR in SCHOLAR-1 was 26% (95% CI: 21%, 31%)
 - ORR results (66% at 12 months) considered outstanding
- High CR rate and high survival rates are considered outstanding

General issues

- When are SATs (complemented with RWD/historic controls) acceptable?
 - Exceptional circumstances only
 - RCTs remain the gold standard for very good reasons
- How can historic controls become more accessible to reviewers?
 - Transparent selection criteria of data sources and/or subsets of patients
 - Pre-specification of criteria and statistical methods
 - Discussed and agreed with CAT/CHMP in advance
- Which endpoints are preferable in a pragmatic trial / SAT with RWD?
 - ORR
 - + DOR?
 - + OS?
 - + ...
 - Not PFS