

Estimands for time to event endpoints in oncology and beyond

Kaspar Rufibach, Hans Ulrich Burger Methods, Collaboration & Outreach Group (MCO) Department of Biostatistics, Roche Basel

Issues and examples

Role of sensitivity analyses

Estimand – a more detailed objective

Choice of estimand involves

- 1. Population of interest
- 2. Endpoint of interest
- 3. Measure of intervention effect

Akacha et al (2015)

Estimand – longitudinal data only?

- Nominal / continuous endpoint measured at one time point without missings: (typically) no ambiguity in definition of estimand
- Longitudinal data for continuous endpoints:
 - Missing data likely to occur
 - Missingness typically related to treatment
 - Various analysis methods imply very different assumptions about missingness
- → Estimand framework will help to structure all this in protocols

Time-to-event data?

We do not know event date – missing data as well! (at least when not censored at clinical cut point)

Overall survival (OS):

- Time from registration / randomization to death
- FDA says «event = death due to any reason». Objective
- Counts also deaths unlikely to be due to cancer as events
- How to handle treatment switching if progression-free survival (PFS) is primary endpoint?
- → already for «hard endpoint» OS one can argue about definition of «event» and «censoring»

Analysis of time-to-event data

- Risk set: only contains patients that have been completely observed up to that timepoint
- Survival analysis = analysis of «completers» up to a given timepoint
- Standard handling of missing data for such type of data can be considered a **«completer analysis»**
- Realistic assumption in case of only administrative censoring
- If censoring not only due to administrative reasons → censoring typically informative → «usual» survival analysis methods biased
- This concerns all time to event analyses, not only in oncology
- Important: Minimize bias by minimizing number of informative censoring or having the same pattern in both groups

Issues and examples

Role of sensitivity analyses

Issue 1: Lack of common definition for time-toevent endpoints

Bellera et al (2013):

Most of these time-to-event endpoints currently **lack standardised definition** enabling a cross comparison of results from different clinical trials.

- Van Cutsem et al (2005): Randomised trial PETACC 03, colon cancer, primary endpoint disease-free survival (DFS): Results not reported in paper, van Cutsem (2009).
 - Count all secondary primary tumours as event (DFS) → result significant
 - Do not count secondary tumors different from colon as event (RF
 → result not significant
 - Again estimand concept could help as it is otherwise not necessarily clear what could be more relevant
- Not a problem for hypothesis test if primary analysis pre-specified. But what about robustness of results?

DFS in breast cancer, Hudis et al (2007)

- Primary endpoint for many large adjuvant breast cancer trials
- Typical definition: Randomization to earliest of
 - local
 - regional
 - distant recurrence
 - death
- Often inconsistently defined events:
 - Treatment of contralateral breast cancer
 - Second primary cancers: contralateral? nonbreast? unknown cancers?
 - Death not due to breast cancer

Table 1. Example of Inconsistent Definitions of Disease-Free Survival

Trial	Local/Regional Recurrence	Distant Metastasis	Death From Any Cause	Invasive Contralateral Breast Cancer	Second Primary Invasive Cancer (nonbreast)	Ipsilateral DCIS	Contralateral DCIS	Ipsilateral LCIS	Contralatera LCIS
BIG 1-98 ⁴	X	X	X	X	X				
MA-17 ¹	X	X		X		X	X	X	X
ATAC ²	X	X	X	X		X	X		
IES ³	X	X	X	X					
ARNO ⁵	X	X		X					

NOTE: Event-free survival used by ARNO.

Issue 2: Treatment switching in oncology

- Between 2000 and 2009 debate how to handle patients starting new therapy prior to event of interest
- Two possible approaches:
 - Censor patients at start of new therapy

2. Follow patients up until event and ignore start of new therapy

- Fleming et al (2009): Approach 2. should be preferred
- Discussion was based on arguments around efficiency (one better than the other) and introduced bias (by censoring them or ignoring further therapy)
- Concept of estimand would have helped the discussion at the time:
 - Do we want to test "time to event" under the assumption "as long as patients stay on study therapy" or under the assumption "irrespective of treatment changes"?
 - Intention-to-treat concept was used to make the point for not censoring patients but was not really powerful. Bias introduced by censoring finally led to the decision towards not censoring

Example: PFS in DLBCL

Diffuse large B-cell lymphoma (DLBCL):

- Accepted endpoint is PFS, registration to earlier of death or progression
- New-anti lymphoma treatment (NALT):
 - Given as 2nd line therapy after progression
 - Without complete response (CR) DLBCL basically a death sentence >
 sometimes (often?) NALT given before progression to «bring patients
 to CR»

→ PFS confounded if «too many» NALTs prior to PD?

What do we want to estimate:

- PFS irrespective of NALT → ignore NALT?
- «True» time-to-progression without confounding by NALT → censor at NALT prior to PD? Informative censoring?

Issues and examples

Role of sensitivity analyses

What are meaningful sensitivity analyses?

- Often, sensitivity analyses are applied to check robustness and dependency of outcome on analysis assumptions made
- Typically, sensitivity analyses are independent of precise formulation of estimand and estimand changes between primary and sensitivity analysis
 - How should differences be interpreted when a different biological quantity is estimated / tested?
 - Should focus sensitivity analyses as those still estimating / testing the same estimand and keeping other analyses rather as secondary endpoints?
- Estimand should be clearly defined not only for primary but also for sensitivity analyses
- Generally, we should be carefully thinking about the purpose of a sensitivity analysis, what it really adds

Example: Do we / HA know what we want?

Two-arm randomized trial in 2nd line indolent Non-Hodgkin's lymphoma:

- Primary endpoint: PFS
- Submitted sensitivity analysis: Censor patients at last assessment prior to
 - NALT (purpose: NALT might be indicative of PD)
 - First missing visit if they had ≥2 missing visits prior to PD or death (purpose: PD might have happened during the time when patient missed visits)
- \rightarrow Robust assessment of treatment effect. Hazard ratios ≈ 0.5 consistent
- Estimand not obvious for (1) and (2)
- «Obvious» sensitivity: do not censor but count event

Agency's response: Please provide sensitivity analyses combining (1) & (2)

- → Why? Purpose (guess simply further «robustness» assessment)? Estimand?
- → Substantial programming effort with short turnaround → would be nice to get clear justification of purpose of such analyses, even more when reducing risk of PFS event by half

Issues and examples

Role of sensitivity analyses

- Time-to-event endpoint: censoring (before clinical cut) = missing data
- Resulting bias minimal when number of missing data minimal or similar in both arms
- Depending on how we handle that missing data & also event definition ->
 estimand not obvious and should be defined
- For some endpoints in some indications → heterogeneity in endpoint definitions. Estimand again not obvious
- We and Health Authorities require sensitivity likely to assess
 «robustness» of primary analysis. Important to put that in estimand
 framework to clearly understand purpose of such sensitivity analyses

References

- Akacha M, Bretz F, Ohlssen D, Rosenkranz G, Schmidli H. (2015). Estimands and their role in clinical trials.
 Summer issue of the American Statistical Association's Biopharmaceutical Section Report, 22, pp. 1-4.
- Bellera, C.A. et al (2013). *Protocol of the Definition for the Assessment of Time-to-event Endpoints in CANcer trials (DATECAN) project: formal consensus method for the development of guidelines for standardised time-to-event endpoints definitions in cancer clinical trials.* Eur. J. Cancer, 49, 769-781.
- Fleming T.R., et al (2009). Issues in Using Progression-Free Survival When Evaluating Oncology Products. Journal of Clinical Oncology. 27(17), 2874–2880.
- Hemmings, R. (2015). The "estimand" problem statement. Presented at PSI "Estimands Discussion Meeting" in February 2015.
- Hudis, C. A., et al (2007). *Proposal for standardized definitions for efficacy end points in adjuvant breast cancer trials: the STEEP system.* J. Clin. Oncol., 25, 2127-2132.
- Van Cutsem, E. et al (2005). Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. 41st Annual Meeting of the American Society of Clinical Oncology; May 13-17, 2005; Orlando, Fla. Abstract LBA8. http://www.oncologypractice.com/tor/gastrointestinal/50936.html
- Van Cutsem, E. et al (2009). Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J. Clin. Oncol., 27, 3117-3125.