

Development of a digital endpoint in Multiple Sclerosis - challenges and opportunities

Fabian Model

Director Biostatistics & Franchise Lead Neuroimmunology

4th EFSPI regulatory statistics workshop, Basel, 23rd September 2019

FloodlightTM – Roche's Digital Platform in MS

Smartphone based data collection: Suite of Active Performance Tests, Passive Monitoring & ePROs

	Active tests									Passive monitoring	
Test type	Experience sampling			Cognition	Hand & arm		Gait & posture			Gait & posture	
Test name	Daily Mood Question (DMQ)	Symptom Tracker (ST)	Multiple Sclerosis Impact Scale (MSIS-29)	Informatio n Processing Speed (IPS) Test	Pinching Test	Draw a Shape Test	Static Balance Test (SBT)	5-U-Turn Test (5UTT)	2-Minute Walk Test (2MWT)	Gait behavior	Mobility pattern
Frequenc y	Daily	Fortnightly & ad hoc	Fortnightly	Weekly	Daily	Daily	Daily	Daily	Daily	Continuous	Continuous

Active Test Example: *Draw a Shape Test*

Advantages of Digital over Standard Clinical Assessments

1) Remote, continuous monitoring of patients in their daily life

EDSS, Expanded Disability Status Scale; PIRA, progression independent of relapse activity MSE UCSF et al. Ann Neurol. 2019;85:653–66

Advantages of Digital over Standard Clinical Assessments

2) Granularity of captured data allows deeper disease phenotyping

Accuracy Pixel points sampled relative to interpolated reference coordinates Drawn shape Reference shape Hausdorff distance **Healthy control Subject 1** 9HPT: 21.75 s 9HPT: 33.8 s Query points and maximal Hausdorff distances are shown in red and black squares, respectively: surface of red area is measured

Local maximum speed highlighted in green; Dwell (hesitation) time is marked in red at corner locations

Digital Outcomes Validity – Current Evidence in MS

First Proof of Concept Studies in Multiples Sclerosis

Floodlight active & passive tests show crosssectional correlation with conventional in-clinic outcome measures

Montalban X et al. ECTRIMS, 10-12 October 2018, Poster 382. Berlin, Germany

Continuous monitoring of Step Count: Longitudinal correlation with disability progression

Block VJ et al, Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis, JAMA, 2019

Challenges with current assessments & Digital Ambition in MS

Clinical trial endpoints

- MS is characterized by phenotypic heterogeneity
- Current outcome measures have limitations in precision and sensitivity to change
- Outcome measures that capture improvement are not available
- **Enable Decentralized Clinical Trials**

Our ambition: qualify digital measures as regulatory-grade label-enabling endpoints and make them available as measurement tools in clinical practice

Endpoint Qualification Procedure FDA (CDER) & EMA

Assessing MS in clinical practice

- Limited use of quantitative measures
- No feasible solutions for frequent monitoring of disease activity or progression
- Full administration of current tools are costly
- Better tools to predict disease course are needed
- Enable ubiquitous RWD collection

Software as a Medical Device FDA (CDRH) & EU Notified Bodies

Roche

Clinical Outcome Assessments

Digital tools fit into the framework but borders get blurred

Coravos A et al. Digital Medicine: A Primer on Measurement, Digit Biomark, 2019

Evidence required for COA qualification

Content validity

- Develop concept of interest and context of use
- Generate evidence that the instrument measures the concept of interest
- Patient understanding
- Patient burden

Construct validity

- Correlation with other related measures
- Discrimination of known groups

Reliability

- Test-retest variability
- Day-day, Device-device variability
- Biological variability

Sensitivity to change

- Mean-to-SD ratio of decline
- Worsening during clinical/sub-clinical activity
- Longitudinal correlation with clinical assessment
- Longitudinal change predicts (long-term) disability

Key Design, Implementation & Analysis Considerations

FDA Regulatory Perspective: Digital Health Technology Tools

Instrumentation and Instrument Validation

- Device model and manufacturer
- Documentation of instrument validation

Data Collection

- Data collection environment
- Duration of data collection period
- Days of the week for monitoring

Variable Selection and Endpoint Definition

- · Concept to be assessed
- Clear definitions of selected variables
- Well-defined, reliable, and clinically meaningful endpoint(s)

Data Processing, Scoring, and Analysis

- · Data file preparation and transfer
- Decisions regarding time interval setting (daily diary, episodic event occurrence)
- · Scoring criteria
- Missing data rules
- Clinically meaningful within-patient change

Challenge: Reliable collection of digital data outside the clinic

How can we adapt good data and record management to the digital remote patient monitoring setting?

ALCOA Principle	Advantages for Digital	Open Questions
Attributable	Reliable documentation of measurement device	 How do we prove data comes from the patient? e.g. eSignatures or Biometric fingerprints?
Legible (traceable and permanent)	 No human interaction in data handling Possibility to reach 100% legibilaty & traceability 	
Contemporaneous	 Modern cell phones have ability to reliably sync their clocks Possibility to guarantee 100% reliable time stamps 	
Original	Possibility to store full source sensor data	 Potential conflict with data privacy requirements (e.g. full GPS location or environmental audio)
Accurate		 How do we prove patient accurately performed assessment? e.g. patient eSignature, statistical quality control, outlier detection?

Challenge: Deep digital phenotyping vs. COA with face validity

Example: Potential eCOA for Gait Domain

Structural Equation Model (SEM)

$$\Sigma = \Lambda \Psi \Lambda' + \Theta$$

- How to establish link between sensor data features and disease concepts meaningful to patients?
 - Qualitative patient studies
 - Movement disorder & disease experts
- Endpoint performance vs. Face validity
 - Power of digital lies in deep and rich phenotyping of patients
 - Likely requiring multivariate sensor feature scores

Challenge: Deep digital phenotyping vs. COA with face validity

Weighted Composite Score Example: ADCOMS (Alzheimer's Disease)

Weighted score of established PerfO, ClinRO & ObsRO optimized to detect linear longitudinal change:

$$(t - t_0) = \sum_{i=1}^{12} d_i \Delta A_i(t) + \sum_{i=1}^{7} e_i \Delta B_i(t) + \sum_{i=1}^{6} f_i \Delta C_i(t) + \dots$$

Implemented in clinical trials, e.g. primary outcome in phase II BAN-2401

Wang et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer's disease trials, J Neurol Neurosurg Psychiatry 2016

Challenge: Deep digital phenotyping vs. COA with face validity

Different views on value of weighted composite COAs

FDA scientists recently published a critical review on weighted composite scores in AD:

(Jin K, Cameron B, Dunn B. On weighted composite scores for early Alzheimer's trials. Pharmaceutical Statistics. 2019)

Active group:
$$Y_i^w = \sum_{l=1}^k w_l Y_{il}$$
 Placebo group: $X_j^w = \sum_{l=1}^k w_l X_{jl}$

Under normality assumptions test statistics for weighted and unweighted scores are:

$$H_0: \mu_Y = \mu_X \qquad \frac{\sqrt{n}(\overline{Y}^w - \overline{X}^w)}{\sqrt{2} w^t \Sigma} N(0, 1) \qquad \frac{\sqrt{n}(\overline{Y} - \overline{X})}{\sqrt{2} \mathbf{1}^t \Sigma} N(0, 1)$$

Corresponding Power:

Weighted:
$$1 - \Phi\left(Z_{1-\alpha} - \frac{\sqrt{n}(\mathbf{w}^t(\boldsymbol{\mu_Y} - \boldsymbol{\mu_X}))}{\sqrt{2\mathbf{w}^t\Sigma}\mathbf{w}}\right)$$
 Unweighted: $1 - \Phi\left(Z_{1-\alpha} - \frac{\sqrt{n}(\mathbf{1}^t(\boldsymbol{\mu_Y} - \boldsymbol{\mu_X}))}{\sqrt{2\mathbf{1}^t\Sigma}\mathbf{1}}\right)$

Power maximized for: $\mathbf{w} = \Sigma^{-1}(\mathbf{\mu_Y} - \mathbf{\mu_X})$

Author argument: without knowing treatment effect no optimal choice of weights possible => use unweighted score

Counter argument: assume trt effect as common %reduction of pcb decline => weighting optimizes signal/noise & power

Optimal combination of high dimensional sensor data will be key for success of digital outcomes!

Summary

- Upiquitous digital technology offers tremendous potential for clinical research
 - Deep phenotyping of patient's symptoms & function
 - Remote patient monitoring and decentralized clinical trials
 - Efficient monitoring and management of disease
 - Efficient collection of meaningful RWD
- Many open questions remain
 - Best practices and regulatory framework for development and qualification of eCOAs
 - Reliable & demonstrable data quality
 - Score & endpoint definitions
 - Handling of missing data

- ...

Doing now what patients need next