Efficacy independent of relapse *HA interactions before ICH E9 R1* Fabian Model ### MS disease course – 2013 consensus An evolving picture and understanding ### Ocrelizumab experience ### Ocrelizumab - Pivotal Studies in RMS and PPMS ### Treatment effect on 12-week Confirmed Disability Progression #### **Primary Progressive MS (PPMS)** - Single study (ORATORIO) - Primary endpoint: 12-week CDP - Secondary endpoint: T25FW - Exploratory endpoint: 9HPT #### **Relapsing MS (RMS)** - Two identically designed studies (OPERA1 + OPERA2) - Primary endpoint: Relapse Rate (46% and 47% reduction) - Key Secondary: 12-week CDP (Pooled OPERA1+OPERA2) - Exploratory endpoint: T25FW, 9HPT ### **HA** interactions with regard to **PIRA** | Indication | HA Discussions | Analysis | Outcome | |------------|---|--|-----------------------------| | PPMS | FDA: Potential impact of few observed relapses during study on 12-week CDP treatment effect | Pre-specified analysis: Subgroup of patients without on-study relapse Pre-BLA meeting: Suggestion to perform analysis where outcome is re-baselined after each relapse | No formal question received | ### Methods for assessing Progression Independent of Relapse (PIRA) | В | Study baseline | IDP | Initial Disability Progression | |------------|--------------------|----------|---| | \bigcirc | Onset of relapse | 12wk CDP | 12-week Confirmed Disability Progression | | ≥30d | 30 days | 24wk CDP | 24-week Confirmed Disability Progression | | (B) | Re-baseline | RAW | Relapse Associated Worsening | | | Relapse-free phase | PIRA | Progression Independent of Relapse Activity | ### **Results: Progression Independent of Relapse** Clinical measures of disability: EDSS, 25 Foot Timed Walk, 9 Hole Peg Test | Analysis | Endpoint | KM estimates at Week
96 (%) | | HR (95% CI) | p-value | |-----------------------------|--|--------------------------------|----------------|--------------------|---------| | 7 marysis | Litapoint | IFN β-1a
(N=829) | OCR
(N=827) | iii (33 % Oi) | | | | Composite CDP | 29.7 | 21.0 | 0.66 (0.54-0.81) | <0.001 | | Overall | EDSS | 15.2 | 9.8 | 0.60 (0.45-0.81) | < 0.001 | | Progression (pre-specified) | T25FW | 18.6 | 14.1 | 0.72 (0.55-0.93) | 0.013 | | | 9HPT | 4.6 | 3.6 | 0.80 (0.47-1.34) | 0.39 | | | Composite PIRA | 23.3 | 18.5 | 0.78 (0.63-0.98) | 0.029 | | Re-baselined | EDSS-PIRA | 9.5 | 7.0 | 0.75 (0.53–1.07) | 0.11 | | PIRA | T25FW-PIRA | 15.5 | 12.6 | 0.77 (0.58–1.03) | 0.075 | | | 9HPT-PIRA | 4.0 | 3.1 | 0.78 (0.44–1.37) | 0.38 | | Sensitivity | Composite CDP Relapse Free Subgroup | 24.8 | 19.2 | 0.75 (0.59 – 0.96) | 0.024 | | Analyses | Composite PIRA Censoring at Relapse | 25.1 | 20.1 | 0.77 (0.61 – 0.96) | 0.023 | ### **HA** interactions with regard to **PIRA** | Indication | HA Discussions | Analysis | Outcome | |------------|---|---|--| | PPMS | FDA: Potential impact of few observed relapses during study on 12-week CDP treatment effect | Pre-specified analysis: Subgroup of patients without on-study relapse Pre-BLA meeting: Suggestion to perform analysis where outcome is re-baselined after each relapse | No formal question received | | RMS | Is Ocrelizumab effective in SPMS patients? Should the label be Relapsing Remitting MS (RRMS) or Relapsing MS (RMS)? Supportive evidence from RMS studies that ocrelizumab is effective on progressive component of disease to support single study PPMS filing | Main analysis: Estimation of PIRA treatment effect based on re-baselining after each relapse Sensitivity Analyses: • Subgroup of patients without on-study relapse • Censoring at first relapse | RMS data not considered as conclusive support for PPMS efficacy Data was considered supportive for RMS indication | Challenge: Communication of statistical methods and implications for validity of causal inference to clinicians and regulators! ### **Pre-Estimand Experience** - Progression independent of relapse was an unexpected and difficult challenge - No formal clinical definition of SPMS or progression independent of relapse exist - Clinical concept based on presence/absence of causal relationship between relapses and progression - Limitations of interpreting on-study events that are modified by treatment and linked to outcome poorly understood and difficult to explain - In a pre-Estimand world - Discussions with clinicians and regulators tended to focused on algorithm description rather than clinical concepts - Language to describe intercurrent events and target of estimation was imprecise, resulting in frequent misunderstandings and frustration ### Efficacy independent of relapse HA interactions after ICH E9 R1 Nicolas Rouyrre and Nikolaos Sfikas ### Siponimod experience ### **Siponimod - Pivotal Study in SPMS** ### Treatment effect on 3month Confirmed Disability Progression ### **Secondary Progressive MS (SPMS)** - Single study (EXPAND) - Primary endpoint: 3-month CDP - Key Secondary endpoints: - T25FW - T2 lesion volume - Secondary endpoint: ARR ## First HA interactions with regard to Efficacy independent of treatment effect on relapse | Indication | HA Discussions | Analysis | |------------|--|--| | SPMS | FDA: Potential impact of few observed relapses during study on 3month confirmed CDP treatment effect | Pre-specified analysis: Subgroup of patients without on-study relapse Subgroup of patients without relapses within 2 years prior to screening Analysis where outcome is re-baselined after each relapse | #### **Outcome** Agency would need to see additional suportive results to be convinced ### Using the estimand framework to reformulate the question(S) of interest How patients could benefit from the treatment apart from its direct effect on relapses? #### 2 different but related questions of medical importance: - Efficacy of siponimod in non-relapsing patients ~ Efficacy in the more advanced/less inflammatory subgroup of patients? - => **Subgroup type** of analysis - Efficacy of siponimod, in the overall population, on disability progression not due to relapses? - => **Overall population** but without confounding from intercurrent relapses ### Question 1: Efficacy of siponimod in non-relapsing patients Preplanned Subgroup analyses 2 pre-planned subgroup analyses | Estimator | Drawback/assumptions | Hazard
Ratio
3mCDP | Hazard Ratio
6mCDP | |--|---|--------------------------|--------------------------| | Subgroup of patients without relapse in the 2 years prior to inclusion | Unbiased Not efficient: absence of relapse prior to study does not preclude on-study relapse activity | 0.87 (0.68;1.11) | 0.82 (0.62; 1.08) | | Subgroup of patients without on-
study relapse | Subgroup defined by post-randomization outcome that is impacted by treatment (likely biased) and by follow-up duration. | 0.85
(0.69;1.06) | 0.76
(0.60; 0.97) | Although providing valuable information these 2 analyses fail to evaluate treatment effect in <u>true non-relapsing patients</u> ### Question 1: Efficacy of siponimod in non-relapsing patients Principal stratum analysis - One particular estimand of interest suggested in ICH E9 R1: principal stratum analysis - P Focus on the subgroup "Non-relapsers", i.e. patients who would not relapse over the specified period of time regardless of treatment assignment (siponimod or placebo). - Patients are classified based on potential intercurrent events on both treatments ### Question 1: Efficacy of siponimod in non-relapsing patients Principal stratum analysis | Population | Non-relapsers, i.e. patients who would not relapse over the specified period of time regardless of treatment assignment (siponimod or placebo), within the targeted SPMS population | |--------------------------|---| | Variable | Occurrence of 3 month confirmed disability progression over the specified period of time | | Intercurrent event | On-study relapse. The intercurrent event of is captured through the population definition | | Population-level summary | Risk Ratio | ### **Question 1: Principal Strata analysis** **Comparing Apples with Apples** ### **Monotonicity assumption** No patient was "harmed": siponimod did not provoke relapses in patients who would not have relapsed under placebo ### **Results - Principal stratum strategy** ### **Efficacy in non-relapsing patients** The principal stratum analysis gives the best possible unbiased estimate of treatment effect in non-relapsing patients CDP, 3-month confirmed disability progression; Crl, credibility interval. *Patients who would not relapse over the specified period of time on-study regardless of treatment assignment. ### Question 2: Efficacy of siponimod, in the overall population, on disability progression not due to efficacy on relapses Hypothetical strategy | Population | SPMS population | |--------------------------|--| | Variable | Occurrence of 3 month confirmed disability progression over the specified period of time | | Intercurrent event | On-study relapse. The intercurrent event be handled using two hypothetical strategies: - Assuming no patients would experience intercurrent relapses (hypothetical prescriptive) - Assuming patients in both treatment arms would have the same risk of experiencing intercurrent relapses (hypothetical natural) | | Population-level summary | Hazard Ratio | # Question 2: Efficacy of siponimod, in the overall population, on disability progression not due to efficacy on relapses Hypothetical prescriptive: Assuming that progression before the first relapse reflects the disability progression between relapsing episodes a Cox model censoring at first relapse would give valid answer Hypothetical natural: Bootstrap based method where we sample with reweighting of the patients to ensure balanced rate of relapses between the 2 treatment arms ### **Results - Hypothetical Strategies** Relapses would not interfere with the assessment of efficacy on CDP independent of effect on relapses CDP, confirmed disability progression; CI, confidence interval; IPCW, inverse probability of censoring weighted; m,month. ^a Effect of siponimod if no relapse was observed: Cox model with censoring at the time of first confirmed relapse with IPCW correction for informative censoring. ^b Effect of siponimod if the same relapse rate was observed in both arms: Cox model applied to samples simulated from empirical distribution. ### **Post-Estimand Experience** - Progression independent of relapse was still a difficult challenge but - Estimand framework provided the tools to provide formal definitions for questions of interest - Concept based on theoretical populations that should be evaluated after taking into account impact of intercurrent events - Limitations of interpreting results were easier to understand and explain - In a post-Estimand world - Discussions with clinicians and regulators focus on target of estimation, intercurrent events and clinical concepts rather than algorithms to be applied - Language to describe intercurrent events and target of estimation is much clearer, resulting in less misunderstandings and more transparency in our interactions