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Introduction

An approach to the optimisation of confirmatory clinical trials
will be presented.
The efficacy of a treatment is tested in the full population
and/or in a pre-specified, biomarker subpopulation.
The optimisation is performed in the context of Bayesian
decision theory. The optimal design is by definition the one
maximising the expected utility.
We compare two different perspectives:

1 Commercial sponsor
2 Public health decision maker
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Framework and Basic Notation

Full Population F

S S ′ = F \ S

The full population F is partitioned into subgroups S and S ′.
λS denotes the prevalence of S in F .
δS and δS ′ denote the true effects in the subgroups.
This implies an overall effect δF = λSδS + (1− λS)δS ′ .
The hypotheses HF : δF ≤ 0 and HS : δS ≤ 0 are investigated.

3 / 23



The Three Design Types

Classical Design
Recruitment from the full population F .
No biomarker test is used.
Trial goal: reject HF : δF ≤ 0.

Enrichment Design
Recruitment from the subgroup S only.
Biomarker test is used to exclude patients in S ′.
Trial goal: reject HS : δS ≤ 0.

Stratified Design
Recruitment from the full population F .
Biomarker test is used to implement stratified randomization.
Trial goal: reject HF or HS .
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Design Type Diagrams
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Tests for Hypothesis Rejection

All tests are based on parallel group comparisons of sample means.
Optimisation under the restriction that the type I error rate is ≤ α.
Classical Design:
HF is tested using a z-test at level α.

Enrichment Design:
HS is tested using a z-test at level α.

Stratified Design:
HF and HS are tested using a z-test at level α.
HF ∩HS is tested at level α using the Spiessens-Debois procedure.
Closed testing principle implies strong control of the FWER1.

To avoid (stratified) rejection of HF driven by the effect in a single
subgroup, the condition

pS ≤ τS and pS ′ ≤ τS ′

is used, where pS and pS ′ are the unadjusted p-values for S and S ′.

1Family-Wise Error Rate
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The Spiessens-Debois Procedure

For adjusted significance levels αF , αS , reject HF ∩ HS if

pF ≤ αF or pS ≤ αS ,

where pF , pS are the p-values of the z-tests for HF and HS .
For fixed αF and α, αS is chosen so that

PHF∩HS
(pF < αF or pS < αS) = α.

Formulas well known from group sequential tests of normally
distributed endpoints.
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What Do We Optimise?

Design Type We choose either a classical, an enrichment or a
stratified design.

Sample Size For each design type, we optimise the per-group
sample size n.

Significance Levels For the stratified design, the signifiance levels
αF and αS for the multiple testing procedure are
optimised.

Hence, the design space may be written as

D = {Cn, En, Sn,αS
| n ≥ nmin, αS ∈ [0, α]},

where Cn and En denote a classical and an enrichment design with
sample size n, respectively, and Sn,αS

denotes a stratified design
with sample size n and a significance level for HS equal to αS .
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The Form of the Utility Function

For both the sponsor and the public health perspective, we
postulate a utility function of the form

U(d) = −C (d) +


ϕF ,d if ψF ,d = 1
ϕS ,d if ψF ,d = 0 and ψS ,d = 1
0 if ψF ,d = 0 and ψS ,d = 0

where
C (d) = Cost for the trial.
ϕF ,d = Reward if the treatment is licenced in F .
ϕS ,d = Reward if the treatment is licenced in S only.
ψF ,d = Indicator function for the rejection of HF .
ψS,d = Indicator function for the rejection of HS .
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The Reward Functions for the Two Perspectives

Sponsor view

ϕF ,d = N · rF · (δ̂F ,d − µF )+,

ϕS,d = λS · N · rS · (δ̂S ,d − µS)+,

Public health view

ϕF ,d = N · rF · (δF − µF ),

ϕS ,d = λS · N · rS · (δS − µS),

where
N = Number of future patients.
rF , rS = Revenue parameters.
µF , µS = Clinically relevant thresholds.
δ̂F ,d , δ̂S ,d = Observed effect estimates.
δS , δF = True effect sizes.
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The Cost Function C (d) for the Three Design Types

C (Cn) = csetup + 2ncper-patient,

C (En) = csetup + cBMD + 2n
(
cper-patient +

cBMS

λS

)
,

C (Sn,αS
) = csetup + cBMD + 2n (cper-patient + cBMS) ,

where
csetup = Fixed setup cost for initiating the trial.
cper-patient = Marginal cost per patient included in the trial.
cBMD = Development cost for the BM screening procedure.
cBMS = Marginal screening cost per patient.
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Optimisation of the Expected Utility

The optimal design is given by

d∗ = argmaxd∈DEπ [E∆[U(d)]] ,

where the expectation is taken over a prior π over the effect sizes
∆ = (δS , δS ′) and the sampling distribution.

The assumption of normally distributed sampling distributions
implies

E∆[U(d)] may be written in terms of the PDF and CDF of the
standard normal distribution for the classical and enrichment
design.
E∆[U(d)] may be computed by a simple numerical integration
for the stratified design.
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Numerical Examples, Three Cases of Parameter Values

Case 1 (Large market, zero BM costs)
N · rS = N · rF = 10,000 MUSD2 per unit of efficacy.
cBMD = cBMS = 0.

Case 2 (Small market, zero BM costs)
N · rF = N · rS = 1000 MUSD per unit of efficacy.
cBMD = cBMS = 0.

Case 3 (Small market, nonzero BM costs)
N · rF = N · rS = 1000 MUSD per unit of efficacy.
cBMD = 10 MUSD and cBMS = 5000 USD per patient.

The following parameters are the same for each case:

csetup = 1 MUSD, cper-patient = 0.05 MUSD,
µF = µS = 0.1,
τS = τS ′ = 0.3,
σ = 1, nmin = 50, α = 0.025.

2Million US Dollars
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Numerical Examples, Two Different Priors for ∆ = (δS , δS ′)

Weak BM Prior
Weak prior evidence that the biomarker is predictive.

Strong BM Prior
Strong prior evidence that the biomarker is predictive.

δS 0 δ δ δ
δS ′ 0 0 δ/2 δ

Weak BM Prior 0.2 0.2 0.3 0.3
Strong BM Prior 0.2 0.6 0.1 0.1

The constant δ > 0 parametrizes the effect sizes in the prior.
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Optimal Trial Design Type (Weak BM Prior)
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Optimal Trial Design Type (Strong BM Prior)
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Opt. U and n (Case 3, Weak BM Prior, δ = 0.3)
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Opt. αF , αS and Power (Case 3, Weak BM Prior, δ = 0.3)
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Opt. U and n (Case 3, Strong BM Prior, δ = 0.3)

Sponsor Public health
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Opt. αF , αS and Power (Case 3, Strong BM Prior, δ = 0.3)

Sponsor Public health
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Conclusions

In principle, a decision theoretic approach can be used to
select appropriate values for all trial design variables.
In practice, the complexity of the resulting optimisation
problem sets the limits of the approach.
The examples presented show that the optimal design depends
strongly on the particulars of the situation:

Subgroup prevalence.
Trial costs.
Initial beliefs (the prior).

For the numerical examples considered, we observed that:
Optimal sample sizes larger for public health than for the
sponsor.
For low prevalences, the classical design outperforms the
designs that are based on the biomarker.
For the sponsor, the enrichment design never maximizes the
expected utility.
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Possible Extensions

The model can be extended in several directions:
Allow for partial enrichment.
Include adaptive enrichment designs, leading to sequential
optimisation.
Make the reward functions more realistic.
Allow N to depend on the trial type.
Include a discount rate for the sponsor.
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