Disclosure

• Maria Costa is an employee and shareholder of GSK

• Data presented is based on human research studies funded and sponsored by GSK
Outline

- Motivation
- Bayesian Joint Modelling of Mixed Outcomes
- Simulation Study
- A Case Study in Type 1 Diabetes
- Summary
Motivation

Quantitative Benefit-Risk as a Strategy for Risk Mitigation

- Goal of NDA Safety Review: To determine the significance of the adverse events and their impact on the approvability of the drug
 - “To show whether or not such drug is safe for use under the conditions prescribed, recommended, or suggested in the proposed labelling” (Food, Drug, and Cosmetic Act (Section 505))

- How do we know that the Benefit-Risk balance is “positive”? If positive, under which context (which population, etc)?

- How to enhance the transparency, reproducibility and communication of the Benefit-Risk balance of medicines?

- How to assess the impact of uncertainty in Benefit-Risk assessments?

Quantitative Benefit-Risk assessments can support decision makers with these questions...
Motivation
Multivariate Modelling, Bayesian Inference & Quantitative Benefit-Risk

Multivariate Modelling
- Potential for efficacy and safety signals to be linked via exposure to active drug
- Joint modelling of efficacy and safety endpoints enables efficient data driven BR analyses

Bayesian Inference
- Provides direct framework to build relevant and intuitive probability statements in the context of BR that can be used to quantify uncertainty and risk
- Bayesian updating mechanism naturally supports “Learn & Confirm” drug development paradigm – crucial when assessing BR

Quantitative Benefit-Risk Assessment
- Can help team gain insight into specific BR questions about key endpoints of interest
- Important to communicate BR to stakeholders in a way that supports decision-making
- Important to quantify uncertainty in BR profile – particularly if aim is to discharge risk
Bayesian Joint Modelling of Mixed Outcomes

Motivation

- Strength of efficacy and safety signals likely to be linked at subject level via exposure to active drug:

- Approach that accounts for observed correlation at subject level between efficacy and safety signals is desirable – more efficient and realistic assessment

- Often efficacy and safety endpoints modelled using different distributions

- Should focus on key endpoints – primary efficacy and key safety finding(s) identified by safety team?
Bayesian Joint Modelling of Mixed Outcomes

Option 1: Use generalised linear mixed models (GLMM)
- Assume J different observations on same subject (each following some distribution)
- For subject i with mean response μ_i, $g(\mu_i) = X_i b + Z_i u_i$, $u_i \sim N(0, G(X_i))$

- Random effect u_i is shared across all J observations for subject i thus modelling potential correlation

- When $g_j(.)$ is not identity function the fixed effects b are conditional on random effects u_i
 - Monte Carlo integration can be used to obtain marginal population effects – important when making inferences at the population level

- Constraints may be necessary to ensure identifiability for certain distributions
Bayesian Joint Modelling of Mixed Outcomes

Approaches to Linking Mixed Outcomes: Copulas

- Option 2: Use copulas
 - Copulas - distribution functions used to form new multivariate distributions given set of marginal distributions of interest (which are preserved)
 - E.g., \(H(y_1, y_2) = C(F(y_1), G(y_2) | \theta) \), with \(F(.) \) and \(G(.) \) the CDF of the marginal distributions of \(y_1 \) and \(y_2 \)
 - \(C(. , . | \theta) \) is the copula function (e.g., Gaussian CDF)
 - \(\theta \) measures association between \(y_1 \) and \(y_2 \)

- Directly obtain marginal population effects for parameters of interest

- Choice of copula \(C(.) \) may impact results through different dependency assumptions

- Difficult to interpret beyond 3 dimensions (non-unique model definition)
Simulation Study

Set Up

- Two treatment arms: new drug (treatment 2) vs comparator (treatment 1)

- Endpoints and parameters:

<table>
<thead>
<tr>
<th>BR Endpoints</th>
<th>Endpoint Type</th>
<th>Parameter Values</th>
<th>Correlation between endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary efficacy endpoint</td>
<td>Continuous, N (μ, σ²)</td>
<td>μ₁ = -150</td>
<td>ρ₁ = 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>μ₂ = -50</td>
<td>ρ₂ = 0.6</td>
</tr>
<tr>
<td>Key AE endpoint - AESI</td>
<td>Binary, Bernoulli (p)</td>
<td>p₁ = 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>p₂ = 0.4</td>
<td></td>
</tr>
</tbody>
</table>

- Comparisons of interest as follows: μ₂ - μ₁ and ρ₂ - p₁

- Non-informative priors assumed for all model parameters

- 100 simulated datasets generated

- Bayesian inference performed using MCMC
Aim is to assess the level of evidence (i.e., posterior probability) associated with BR profiles of interest and to understand trade-off between efficacy & safety.

Different BR profiles can be set up using range of clinically meaningful efficacy and safety thresholds:
- Δ_e represents minimum improvements in efficacy with the new drug relative to comparator
- Δ_s represents maximum increases in risk with the new drug relative to comparator

Δ_e and Δ_s are independent and set by the project team - can be viewed as clinical Go/No-go boundaries.

Trade-off between efficacy and safety represented by following probability statement:
- Prob ($\mu_2 - \mu_1 > \Delta_e$ and $p_2 - p_1 < \Delta_s$ | Data, prior)
Simulation Study

Results for a typical simulated dataset

Posterior Distribution for $\mu_2 - \mu_1$ and $p_2 - p_1$
(Joint and Marginal)

Elliptical shape of joint posterior reflects correlation between μ_2 and p_2

BR Contour
Prob $(\mu_2 - \mu_1 > \Delta_e$ and $p_2 - p_1 < \Delta_s |$ Data)

Example: 84% posterior probability that difference active vs comparator in risk of an AE is at most 0.35 ($\Delta_s = 0.35$) and in efficacy at least 80 units ($\Delta_e = 80$)
Simulation Study

Impact of correlation

- To assess impact of correlation on $\text{Prob}\left(\mu_2 - \mu_1 > \Delta_e \text{ and } p_2 - p_1 < \Delta_s \mid \text{Data, prior}\right)$ simulations were run for different values of ρ_2

- We fix $\Delta_e = 100$ and $\Delta_s = 0.3$

<table>
<thead>
<tr>
<th>ρ_2</th>
<th>GLMM Model</th>
<th>Gaussian Copula Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24.95%</td>
<td>26.06%</td>
</tr>
<tr>
<td>0.2</td>
<td>23.06%</td>
<td>23.93%</td>
</tr>
<tr>
<td>0.4</td>
<td>20.72%</td>
<td>21.68%</td>
</tr>
<tr>
<td>0.6</td>
<td>18.42%</td>
<td>19.77%</td>
</tr>
<tr>
<td>0.75</td>
<td>17.89%</td>
<td>19.57%</td>
</tr>
</tbody>
</table>

- Increasing values of ρ_2 leads to lower posterior probability values for the BR profile defined by $\Delta_e = 100$ and $\Delta_s = 0.3$
 - Accounting for correlation results in more realistic BR assessments
Choosing dose with optimal BR profile is major hurdle in drug development
- Too high dose may result in an unacceptable risk profile
- Too low dose may decrease the chances of achieving the desired level of efficacy in a phase 3 trial
- 16% of NME applications fail due to uncertainty related to dose selection (Sacks et al, 2014)

Previous simulation study expanded to dose-response setting:
- Same 2 endpoints for efficacy and safety
- 5 active doses (from d2 = 0.3 to d6 = 6 units) and comparator (d1 = 0)
- Correlation ρ_d between efficacy and safety at subject-level increases with dose such that $\rho_{d1} = 0$, and $\rho_{d1} \sim 0.6$
- Emax model (3 parameter) used to generate data for efficacy
 - $E_0 = -150$, $E_{\text{max}} = 150$, $ED_{50} = 0.5$
- Linear regression model on probit scale used to generate safety data
 - $\text{Prob (AE in dose } d\text{)} = p_d = \Phi (-1.28 + 0.26 \times d)$
- Bayesian inference via MCMC
Simulation Study: Dose-Response
Minimum Effective Dose vs Critical Effective Dose

- We define the following quantities:
 - Minimum Effective Dose (MED) = the smallest dose \(d \) that produces an improvement of size \(\Delta_e \) or larger compared to placebo with posterior probability > \(p\% \)
 - Critical Effective Dose (CED) = the largest dose \(d \) that produces an increase in toxicity no greater than \(\Delta_s \) compared to placebo with posterior probability > \(p\% \)

How to select the dose with optimal BR profile?
(given \(\Delta_e, \Delta_s, \) and \(p \))

- If MED < CED
 - Any dose within [MED, CED] will satisfy the desired BR profile
- If MED = CED
 - This corresponds to the single optimal dose
- If MED > CED
 - Will need to either modify \(\Delta_e, \Delta_s, \) or \(p \), or assess whether clinical program is viable
Simulation Study: Dose-Response
Choosing the dose with optimal BR profile – results for a typical simulated dataset

- In general, as Δ_e increases and Δ_s decreases, MED \leq CED only by lowering the posterior probability $p\%$ - so the team will need to accept more uncertainty going to phase 3

- If existing correlation is not accounted for, data may erroneously suggest that MED \leq CED with high probability p, when in fact this is not the case (simulation results not shown)

If $\Delta_e=80$ $\Delta_s=0.3$ and $p = 70\%$ then MED $= 2.5$ and CED $= 4.0$

Any dose in the range $[2.5, 4.0]$ can be considered “optimal”

If $\Delta_s= 0.3$ is considered too high increase in risk of AE and team sets $\Delta_s= 0.05$, then MED \leq CED only if $p = 30\%$

This means there will be considerably more uncertainty with this more stringent BR profile
Treatment X was a monoclonal antibody targeting CD3 receptors that was being developed as a potential treatment for new-onset (<3 months) Type 1 diabetes mellitus.

- Significant associated morbidity and mortality (neuropathy, ischemic heart disease, among others)

A clinical trial (PoC) was designed to assess efficacy and safety of X over an 18 month period in patients with new-onset type 1 diabetes.

- **Primary efficacy** endpoint was the decline of C-peptide levels at 6 months (measurement of beta-cell function) – treated as continuous outcome

- **Key safety** events of interest included infection and Cytokine Release Syndrome (CRS) – treated as binary outcomes

- A total of 73 subjects had C-peptide levels recorded at 6 months (39 received X, 34 placebo)
Case Study – Treatment X for New Onset Type 1 Diabetes

1 Efficacy & 1 Safety Endpoint – Bayesian Inference of Multivariate Model

- For safety, focus initially on risk of infection, modelled as binary outcome

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Posterior Median</th>
<th>95% Credible Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFB C-Peptide (X - Placebo)</td>
<td>0.63</td>
<td>(0.27, 0.99)</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob (Infection) (X - Placebo)</td>
<td>0.24</td>
<td>(0.07, 0.42)</td>
</tr>
</tbody>
</table>

CFB = Change from baseline at 6 months

- GLMM and Bayesian inference used to obtain parameter estimates of interest

Observed correlation suggests that for patients receiving X, more stable C-peptide levels tend to be associated with the occurrence of at least one infection event.

Patients receiving X have more stable levels of C-Peptide

Patients receiving X have higher risk of serious infection
Case Study – Treatment X for New Onset Type 1 Diabetes

1 Efficacy & 1 Safety Endpoint – Benefit-Risk Assessment

BR Contour Plot

BR profiles with “high” posterior probability correspond to scenarios with a substantial increase in risk of infection.

The data does not support BR profiles for which $\Delta_e > 0.8$ and $\Delta_s < 0.1$.
“Given a patient’s baseline C-peptide level, what is his/her likely BR profile with drug X compared to placebo?”

The BR profile of X is robust to a patient’s baseline C-Peptide level.

In placebo group, subjects with lower baseline C-Peptide levels have a more favourable BR profile.
Case Study – Treatment X for New Onset Type 1 Diabetes

Benefit-Risk Assessment

- Does the BR assessment of drug X PoC study support further development?
 - BR analysis presented here suggests that high efficacy levels with low increases in risk are unlikely (< 10% probability)

- GSK run phase 3 program with lower dose of drug X – studies failed to achieve their primary endpoints, although risk profile improved
 - This is coherent with BR analysis conducted on PoC data – could the expensive and time consuming phase 3 program been avoided by looking quantitatively at chances of positive benefit-risk profile?
Bayesian inference based on joint models of mixed outcomes is a powerful tool for Benefit-Risk assessment

- Explore dependency between benefit and risk thresholds for decision-making
- Joint (and conditional) probabilistic statements that help quantify risk in development program
- Predicting responses for a new subject conditional on what was learned from study data

Benefit-Risk profile is a combination of two different quantities:

- Set of thresholds for efficacy and safety – define Benefit-Risk profile of interest (qualitative)
- Level of evidence (posterior probability) to support Benefit-Risk profile – quantify risk (quantitative)

Methods have been successfully applied to 3-dim setting as well (mixture of continuous, binary and count endpoints)

- Beyond 3 dimensions it is difficult to interpret and visualise quantitative BR assessments
References

- Costa & Drury (2017), Bayesian Joint Modelling of Benefit and Risk in Drug Development (submitted)

Acknowledgements

- Thomas Drury
- Nigel Dallow
- Graeme Archer
- Nicky Best
- James Roger
Thank you