The Non-inferiority Margin in Diabetes Trials

Lars Endahl
Biostatistics, Novo Nordisk
The non-inferiority margin in diabetes trials
20NOV2008

Outline

• What is diabetes?
• Measuring efficacy in diabetes trials
• Regulatory guidance on non-inferiority
• Balancing deficits against benefits
• Price negotiations
• Summary and discussion
Disclaimer

- The views expressed in this talk represents that of those speaker and not necessarily Novo Nordisk
What is diabetes mellitus?

• Diabetes is a disease characterised by persistent hyperglycaemia
 • hyperglycaemia = elevated blood glucose conc.

• Persistent hyperglycaemic is caused by insufficient availability of insulin as a result of
 • failure in the endocrine system
 • insufficient insulin secretion
 • type 1 diabetes (juvenile diabetes)
 • insulin resistance
 • tissue insensitive to insulin
 • type 2 diabetes (senile diabetes)
Long term complications to diabetes

- Persistent hyperglycaemia increase the risk of
 - microvascular complications
 - retinopathy (eye disorder)
 - nephropathy (kidney disorder)
 - neuropathy (nerve disorder)
 - macrovascular complications
 - arteriosclerosis (thickening of arterial walls)
 - increased tendency to infections
Glycosylated Hemoglobin A1c (HbA1c)

- Persistent hyperglycaemia can be assessed by HbA1c
 - HbA1c percentage of hemoglobin that is glycosylated
 - Hemoglobin carries oxygen from the lungs to the rest of the body and carbon dioxide back
 - Glucose stick to hemoglobin

- HbA1c correlates well with average blood glucose over a 3-months period
 - Nathan et al. (2008)

- The target for treatment of diabetes is HbA1c ≤ 7%
 - ADA target
Measuring persistent hyperglycaemia

- In both clinical practice and controlled trials, HbA1c is the most important biomarker for assessing long term hyperglycaemia.

- Standardised assays exist for measuring HbA1c:
 - NGSP and IFFC assays

- HbA1c is used uniformly across diabetes trials as the primary efficacy endpoint.
Showing differences in HbA1c

- Insulin is often used in the treatment of diabetes, since insulin is the most efficient drug in lowering blood glucose

- In trials comparing one insulin preparation to another it can be difficult to show differences in HbA1c
 - all insulin preparations are individually titrated
 - dose titration using a pre-specified algorithm is often used in insulin trials to ensure appropriate treatment of subjects

- For these reasons trials comparing different insulin preparations are almost exclusively designed as non-inferiority trials
Example: The NOVEL-1 trial

- NOVEL-1 is a randomised, controlled, 1-year, multinational, parallel-group trial investigating efficacy and safety of insulin detemir in subjects with type 1 diabetes.

- 447 subjects randomised 2:1 to:
 - insulin detemir
 - insulin glargine
Results for HbA1c (%)

<table>
<thead>
<tr>
<th></th>
<th>Detemir</th>
<th>Glargine</th>
</tr>
</thead>
<tbody>
<tr>
<td>#subjects</td>
<td>283</td>
<td>134</td>
</tr>
<tr>
<td>Baseline mean (SD)</td>
<td>8.1 (1.1)</td>
<td>8.2 (1.2)</td>
</tr>
<tr>
<td>Change from Baseline</td>
<td>-0.53 (0.84)</td>
<td>-0.54 (0.69)</td>
</tr>
<tr>
<td>mean (SD)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ITT analysis
Detemir – Glargine
0.01 [-0.13, 0.16]

PP analysis
Detemir – Glargine
-0.01 [-0.16, 0.15]
Declaring Non-inferiority

- Is it possible to claim non-inferiority of Detemir versus Glargine based on these results?

- From a practical point of view we could say that
 - there’s hardly any difference between the HbA1c reductions
 - ITT and PP comes out on opposite sides of zero
 - so if the trial is not too small we should suspect that the two products (or regimens) have similar HbA1c lowering potential

- From a statistical point of view we know that
 - it solely depends on the non-inferiority margin
 - but how to select the non-inferiority margin?
Regulatory guidance

 - Statistical principles for clinical trials

- ICH-E10 (2001)
 - Choice of control group and related issues

- EMEA (2007)
 - Guideline on the choice of non-inferiority margin

- EMEA (2002)
 - Guidance on clinical investigation of medicinal products in the treatment of diabetes mellitus

- FDA (2008)
 - Diabetes mellitus: developing drugs and therapeutic biologics for treatment and prevention
EMEA guidance (2002)

- “an even apparent small difference in HbA1c is considered clinically relevant in terms of risk reduction of diabetic complications”

- “necessary to balance the degree of potential non-inferiority against some other clinical advantage”

- “applicant should demonstrate that this advantage can be equated to the loss of efficacy in some sense”
 - page 6
HbA1c deficit versus other benefits

- How to equate loss of efficacy to other clinical advantages?
- What is a given HbA1c deficit equal to in terms of, for instance, increased risk of microvascular complications?
 - depends on the type of complication
 - depends on the baseline HbA1c value
 - cf. the next slide
The risk of microvascular complication increases non-linearly with increasing HbA1c

- cf. results from DCCT
HbA1c and risk reduction

• So if a new drug lowers HbA1c more than a standard drug for subjects with high baseline HbA1c, but less for subjects with low baseline HbA1c, it could be that
 • the new drug is inferior to the standard drug in terms of lowering HbA1c on average
 • the new drug is superior to the standard drug in terms of lowering microvascular risk on average

• In such cases the new drug has a clear clinical advantage even if the HbA1c lowering effect is inferior on average
Balancing against other benefits

- Even without a treatment times baseline interaction other benefits of the new drug may outweigh a possible HbA1c deficit

- Need to balance a deficit in HbA1c lowering effect against other benefits of the new drug in terms of e.g.
 - fewer hypoglycaemic episodes
 - fewer injection site reactions
 - less weight gain
 - improved convenience of administration
 - improved compliance
 - improved lipid profile
 - improved cardiovascular profile
 - etc.
Health Care Balance

• Balancing a deficit in HbA1c against potential benefits of a product could be done in a health care evaluation in terms of
 • cost to health care system
 • cost to the society in general
 • quality of life
 • life expectancy
 • etc.
Consistency and Transparency

- The outcome of such health economic evaluations would presumably differ from:
 - country to country
 - company to company
 - drug to drug
 - trial to trial

- This would lead to loss of simplicity, consistency and transparency in the non-inferiority concept when balancing a HbA1c deficit against other benefits

- Better to have regulatory authorities dictating a non-inferiority margin common to all anti-diabetic drugs, companies and countries
The non-inferiority margin

- Recently the FDA issued a draft guidance on diabetes trials, in which a non-inferiority margin was provided.

- “Typically, we accept a non-inferiority margin of 0.3 or 0.4 HbA1c percentage units provided this is no greater than a suitably conservative estimate of the magnitude of the treatment effect of the active control in previous placebo-controlled trials.”
 - FDA (2008) page 27
Placebo-controlled insulin trials

- Placebo-controlled trials usually not possible with insulin
 - placebo-insulin is unethical for all trials in type 1 diabetes
 - survival for type 1 diabetics depends on daily injections of insulin
 - placebo-insulin is considered unethical for most trials in type 2 diabetes
 - placebo insulin would be up-titrated to huge doses and hence volumes to inject
 - type 2 is a progressive disease
Placebo effect in diabetes

• Type 1 diabetes:
 • insulin treatment effect is typically around 0.5%-1%
 • if type 1 diabetics had their insulin substituted with placebo, the HbA1c would continue to increase until diabetic coma and later death occurred
 • hence the insulin treatment effect versus placebo in type 1 diabetes is larger than 0.5%, which again is larger than the required 0.4%

• Type 2 diabetes:
 • insulin treatment effect is typically around 1%-2%
 • the HbA1c reduction with placebo non-insulin anti-diabetics is typically in the interval from -0.5% to +0.5%
 • hence the insulin treatment effect versus placebo in type 2 diabetes is larger than 0.5%, which again is larger than 0.4%
Balancing deficits against benefits on price

- With 0.4% as a universally accepted non-inferiority margin the simplicity, transparency and consistency of the non-inferiority concept is maintained across trials, countries and products

- The balance of HbA1c deficit against other benefits will automatically come into play in the price negotiations in the different countries, where the product is to be launched

- The price of a product will by default differ from
 - country to country
 - depending on the reimbursement and health care system
 - drug to drug
 - depending on the deficit-benefit balance
Self-regulation through the price

- So the market price of a product would prevent slightly inferior (though statistically non-inferior) products without any other benefits to reach the market
 - if a drug is non-inferior but has less efficacy and no real benefits to balance this deficit
 → market price of the drug would very low
 → business case for the drug would be unattractive
 → drug will not be marketed
Summary and discussion

- The primary efficacy endpoint in diabetes trials is HbA1c
 - despite the many advantages of HbA1c, it does not provide all relevant information
 - other benefits may outweigh a deficit in HbA1c lowering effect
 - in balancing benefits against deficits the non-inferiority concept loses its simplicity, transparency and consistency

- To maintain simplicity the non-inferiority margin should be dictated by regulatory authorities
 - the price issues will ensure that drug marginally inferior in terms of HbA1c will have other benefits that outweigh the HbA1c deficit