Multiplicity Considerations in Confirmatory Subgroup Analyses

Frank Bretz
European Statistical Meeting on Subgroup Analyses
Brussels, November 30, 2012
Subgroup analyses

• **Exploratory** subgroup analyses are often used to:

 • assess internal consistency of study results

 • rescue a failed trial by assessing the expected risk-benefit compared to the whole trial population in a post-hoc manner

• **Confirmatory** subgroup analyses

 • pre-specify one (or more subgroups) in the trial protocol (based on demographic, genomic or disease characteristics)

 • control Type I error rate for the pre-specified multiple hypothesis test problem and fulfill other standard requirements for confirmatory trials
Why the concern about multiplicity?
The Scientific Concern: Reproducibility

Assume 2 independent studies comparing treatment vs. placebo:

1. Study I with 4 disjoint subgroups

2. Study II only with the “best” subgroup from Study I

How do the observed effect sizes in the selected subgroup compare across both studies?

perfect reproducibility

(adapted from Westfall, Bretz and Tobias, 2012)
Confirmatory subgroup analyses

- Require tailored multiple test procedures for confirmatory inference

- Selected references:
 - Song and Chi (2007)
 - Wang et al. (2007)
 - Alish and Huque (2009)
 - Spiessens and Debois (2010)
 - Zhao et al. (2010)
 - Bretz et al. (2011)
 - Dmitrienko and Tamhane (2011)
 - Alish and Huque (2012)
 - Tang, Liu, Hsu (2012)
 - Tu, Hsu (2012)
Case Study 1
New treatment as add-on to **background therapy**

Primary objective:

To demonstrate efficacy of at least one of two regimen as add-on therapy despite stable **treatment with X**

Secondary objective:

To demonstrate efficacy of at least one of two regimen as add-on despite stable **treatment with X or other drugs of the same class (ALL)**

Design:

Randomization to be **stratified** by X or not X, enrollment such that 100p% of patients are on X.
Case Study 1
New treatment as add-on to background therapy

Results in 4 hypotheses, where after discussions with clinical team:

- for each regimen, ALL is tested only if X is significant
- both regimens are considered equally important
- only if X and ALL significant for a same regimen, its significance level is propagated to competing regimen

![Diagram showing relationships between hypotheses and regimes](image)
Case Study 2
New treatment for targeted therapy

1. Targeted therapy of benefit in a subpopulation S
 • If beneficial in S, test for efficacy in full population F
 • Compare two doses (low / high) of new treatment against Standard-of-Care

2. Clinical considerations:
 • For each dose, F is tested only if S is significant
 • Both doses are considered equally important
 • As soon as S is significant for one dose, propagate some of the significance level to the other dose (safety considerations)

3. Sequentially rejective graphical procedure based on weighted Dunnett and t tests (Bretz et al., 2011; Millen and Dmitrienko, 2011)
 • Correlation between all 4 test statistics fully known and determined through sample sizes
 • In the balanced case and with $p = n_S / n_F$
 \[
 \text{corr}(T_i, T_j) = 0.5, \sqrt{p}, \text{ or } \sqrt{p}/2
 \]
Case Study 2
New treatment for **targeted therapy**

- Resulting graphical test procedure reflecting the clinical considerations
- Dunnett-adjusted significance levels 0.0135 (> 0.0125 = α/2 from Bonferroni)

![Graphical representation of the study](image)

20% prevalence, $\alpha = 0.025$

Sub

Full

Low dose High dose
Case Study 2
New treatment for targeted therapy

- Numerical example with 4 unadjusted p-values

20% prevalence, $\alpha = 0.025$

$\alpha_1^* = 0.0135$

Sub

H_1

$p_1 = 0.01$

$1/2$

H_2

$p_2 = 0.03$

$\alpha_2^* = 0.0135$

Full

H_3

$p_3 = 0.005$

$1/2$

H_4

$p_4 = 0.5$

Low dose

High dose
Case Study 2
New treatment for targeted therapy

- Reject H_1 because $p_1 = 0.01 < 0.0135 = \alpha_1^*$
Case Study 2
New treatment for targeted therapy

- Update graph to complete α-propagation after first rejection

20% prevalence, $\alpha = 0.025$

Sub

Low dose

Full

High dose

$\alpha_3^* = 0.0064$

$p_3 = 0.005$

$p_4 = 0.5$

$\alpha_2^* = 0.0191$

$p_2 = 0.03$
Case Study 2
New treatment for targeted therapy

- Reject H_3 because $p_3 = 0.005 < 0.0064 = \alpha_3^*$

20% prevalence, $\alpha = 0.025$

\[\alpha_2^* = 0.0191 \]
\[p_2 = 0.03 \]

\[\alpha_3^* = 0.0064 \]
\[p_3 = 0.005 \]

\[\alpha_4^* = 0.0064 \]
\[p_4 = 0.5 \]
Case Study 2
New treatment for targeted therapy

- Update graph to complete α-propagation after second rejection

20% prevalence, $\alpha = 0.025$

$\alpha^*_2 = \alpha = 0.025$

\[\begin{align*}
\text{Sub} & \quad H_2 \\
\text{Full} & \quad H_4 \\
\text{Low dose} & \quad H_4 \\
\text{High dose} & \\
\end{align*} \]

$p_2 = 0.03$

$p_4 = 0.5$
Case Study 2
New treatment for targeted therapy

• Stop the test procedure because $p_2 = 0.03 > 0.025 = \alpha_2^*$
• No further rejection possible

$\alpha_2^* = \alpha = 0.025$

20% prevalence, $\alpha = 0.025$

Sub

Full

Low dose

High dose

$p_2 = 0.03$

$p_4 = 0.5$
Case Study 3
New treatment in naive/pre-treated patients for PFS and OS

Structured hypotheses with two levels of multiplicity

1. Two-armed trial comparing novum vs. verum with six hypotheses:
 • three populations (S+ = naive, S– = pre-treated, F = full population)
 • two hierarchical endpoints: PFS (after 2.5 years) ➔ OS (after 4 years)

2. Important clinical considerations
 • conditional approval envisaged if PFS significant (study then continued until OS analysis)
 • avoid significance in S+ and F, but no significance in S– (otherwise difficulties with label)

How to construct decision strategy that reflects these requirements?
Case Study 3
New treatment in **naive/pre-treated patients** for PFS and OS

Remarks:

- After 2.5 years:
 a. Recruitment is completed
 b. No OS analysis is performed (otherwise extension to group-sequential setting mandatory)

- No edges from OS to PFS, as the PFS analysis is concluded by the time of the OS analysis

- Choice of α_3:
 a. Very small $\alpha_3 = 0.04 \times 0.025 = 0.001$ ensures that PFS effect in F is declared significant only in case of an overwhelming effect
 b. Setting $\alpha_3 = 0$ is an alternative possibility
Is strong FWER control always appropriate?

• Consider two disjoint subgroups S_+ and S_- based on e.g. background therapy, predictive biomarker, disease status, or regions, with associated hypotheses H_+ and H_-

→ Applying strong FWER control, we have to adjust for multiplicity (e.g. test at $\alpha/2$)

→ However, if H_+ is rejected, drug is approved only for S_+
 – Risk of a false decision is strictly restricted to S_+ which can be controlled by testing H_+ at level α

→ Testing H_+ and H_- each at level α seems reasonable, although FWER can become almost 2α

→ FWER does not account for the relative risk that comes with false decisions

• Testing $\{H_1, H_2\}$ (e.g. two doses against placebo) and $\{H_+, H_-\}$ (e.g. disjoint subgroups) lead to different multiple testing problems
Summary

• Many **different applications** involving confirmatory subgroup analyses
 • Background therapy
 • Targeted therapy (e.g. based on a predictive biomarker)
 • Naive / pre-treated patients
 • Regional subgroups
 • ...

• **Lack of reproducibility** is a major concern, **even more in retrospective analyses** than in studies with prospectively defined subgroups

• Closer look at the subgroup hypotheses testing problem suggests that **strong FWER control may not always be appropriate** for clinical studies