

What's inferior about a non-inferiority trial?

Jorgen Seldrup Centre for Statistics in Drug Development (CSDD) Quintiles

The problem is:

It has been hijacked by the statisticians

Since clinicians cannot agree, let the statisticians solve the problem! (Missing value problem)

Outline

- Design of NI trials
- Implementation of NI trials
- Analysis of NI trials
- Example

Errors in analysis – the trial may be rescued

Errors in design and the trial is 'dead'

(theory)

Choice of control group (ICH E10)

- Historical
- No treatment
- Placebo
- `dose-response'
- Active treatment

CFR, 21 part 314.126: Adequate and well-controlled studies

(expectation)

Superiority

- Placebo controlled RCT
- Active controlled RCT
- Non-inferiority
 - Active controlled RCT

EFFICACY

Justification of NI Design

- Placebo is unethical
 - Accepted active treatment exists
 - Delaying or omitting treatment may be harmful
- Risk/Benefit profile
 - Fewer/less serious AEs
 - Treatment administration advantages

Simple Statistical Setting

Hypotheses for a NI trial (symbolic):

 $H_0: T \le C - \delta$ $H_1: T > C - \delta$

 $(T = Test/new, C = Control/active, \delta = NI margin)$ Proportions/Ratios/Means

Simple Statistical Setting

Hypotheses for a NI trial (symbolic):

$$H_0$$
: T ≤ C - δ
 H_1 : T > C - δ

 $(T = Test/new, C = Control/active, \delta = NI margin)$ Proportions/Ratios/Means

Hot Design Topics

- NI margin
 - Clinical margin vs statistical margin
 - Clinical acceptability
 - Statistical reasoning
 - Constancy assumption
 - Assay sensitivity (implementation topic)
 - Putative placebo analysis
- ▶ "Biocreep"
- Switching

Clinical acceptability

- Conceptually `unfamiliar'
- Subjective
 - Agreement
 - Investigator/Sponsor/Regulator

Constancy Assumption

The effect of the active control treatment does not change from the past to the present

Generally cannot be verified

- Patient population
- Background therapy
- Medical practice
- Endpoints

... so, what next?

"... the active control would have been superior to placebo in the NI trial had a placebo been used ..."

... but it wasn't!

... so, what next?

Next

We statisticians do our best (but is it good enough)

... an approximate answer to the right question is better than the right answer to the wrong question ...

Statistical Margin

Premise:

On existing evidence:

- The effect of the new treatment should be 'close' to that of the active control treatment
- The new treatment should retain a certain proportion of the effect of the active control treatment (e.g., 50%)

Putative Placebo Analysis

(Hasselblad and Kong, DIJ:2001)

$$T/P = T/C \times C/P,$$

e.g., T/C and C/P are relative risks

<u>NOTE:</u> T/C is from the present NI trial C/P is from a meta-analysis of historical trials

Relies largely on meta-analysis! ... but who believes in meta-analysis?

T vs P

- Need to estimate (or test) the difference `T-P' (or some fraction)
- Need to account for within- and across trial variability
 - CBER fixed margin method
 - Synthesis method
- Pragmatic approach
 - `smallest lower bound'
 - Lower confidence limit from meta-analysis

... occurs when an inferior test treatment becomes the active control treatment in the next NI trial and so on until the active control is no better than placebo

Cure:

Always use the 'best'/same comparator/ active control treatment

(non-inferiority trial) ... If the lower limit of the calculated 95% confidence interval (CI; 2-sided) for the difference T - S in overall success rate, is greater than -15%, T will be considered at least as effective as S. In accordance with the PtC (Ref), should the lower limit of the 2-sided 95% CI be greater than 0 (zero), the p-value associated with an appropriate test of superiority will be calculated. A p-value of < 0.01 will be considered convincing evidence of the superiority of T...

PtC on switching between superiority and non-inferiority (CPMP/EWP/482/99, London, 27 July 2000)

IV.1 (PtC): "In this case (*sic*, i.e., switching) it is acceptable to calculate the p-value associated with a test of superiority and to evaluate whether this is sufficiently small to reject convincingly the hypothesis of no difference"

Balancing Benefit/Risk

NI efficacy trial – the hidden agenda

- If NI design is justified by `maybe not quite as efficacious but fewer AE'
 - Dual primary objective: NI for efficacy; superiority for safety
 - No need for adjustment (but the interpretation will only be 'success' if both objectives are achieved)
 - Sample size considerations

Implementation/conduct

Adequate and well-controlled studies

See CFR Title 21, §314.126: Adequate and well-controlled studies

(Not so) Hot Analysis Topics

- Analysis populations
 - E9: "... in a NI trial use of the FAS/ITT is generally not conservative and its role should be considered very carefully"
 - PtC Switching: "...in a NI trial the FAS and the PP analysis set have equal importance ... and should lead to similar conclusions"
- Secondary analyses (?NI or superiority)

Example

Indication:

Invasive fungal disease; serious and life-threatening

Background to selection of NI margin:

$$P = 0\%$$

$$S (active) = 37\% (range 14\%-83\%)$$

Recently one adequate and well-controlled NI trial (margin 20%) had shown

C = 53%

to be superior to

Protocol statement

The proposed margin of 20% will thus allow to demonstrate activity of T in the clinically expected and acceptable range, i.e. superiority over no treatment, and efficacy at least as good as S. Non-inferiority to C at the 20% level would indicate that T may offer certain clinical benefits not available with currently approved drugs of the same class.

The following hypothesis will be tested, where R is the successful outcome rate:

```
H_0: R(T) \le R(C) - \delta
```

```
H_1: R(T) > R(C) - \delta.
```

```
A sample size of 125 patients per treatment group is calculated based
on the following assumptions (NQuery Advisor, v5, module PTE1a):
Overall outcome rate R = 55\%
```

```
δ = 20%
```

```
Power = 90\%
```

```
Significance level = 0.025 (1-sided)
```

Allowing for 30% of patients not completing the trial satisfactorily (i.e. unevaluable for overall outcome at Day 42), approximately 180 patients per group or 360 patients will be enrolled.

- NI trial is OK for demonstrating efficacy (when used appropriately)
- Have a meaningful pragmatic discussion about the choice of δ (sample size)
- Don't get hung up on problems we cannot solve (placebo is missing – don't invent it)
- Plan on an "adequate and well-controlled study"