Subgroup analysis using Bayesian hierarchical models: a case study

Beat Neuenschwander
Amy Racine, David Ohlssen, Michael Branson
and
Hayley Jones (MRC, Cambridge)
Basel, 26 June 2009

Outline

- Introduction to subgroup analysis
- Shrinkage
- Models
- Case Study
- Concluding Remarks
Introduction to Subgroup Analysis

Introduction

- For biological reasons treatments may be more effective in some populations of patients
- Important baseline factors
 - Risk factors
 - Genetic factors
 - Demographic factors
Introduction

Various Aspects

(Focus of this talk in **bold**)
- Definition of subgroups
 - Prospective vs. retrospective definition
 - “small” vs. very large number of subgroups
 (a few important factors that are considered predictive vs. data-mining)
- Safety vs. efficacy
- Testing (default “decision-making”) vs. estimation (inference)
- One trial vs. multiple trials
- Frequentist vs. Bayesian
- ...

Example 1

Data from one study

(Davis & Leffingwell, Contr Clin Trials 1990)
- Endpoint
 - Coronary Heart Disease (CHD) death and Myocardial Infarction
- Comparison
 - diet + placebo (C)
 - diet + cholestyramine (T)
- Subgroups defined by baseline characteristics
 - ECG (positive/negative)
 - LDL cholesterol (high/low)
 - Risk score (including systolic blood pressure, age, smoking)
Example 2 (case study)

Data from several studies

- Subgroup analysis in a meta-analytic context
- Efficacy comparison T vs. C
- Data from 7 studies
- 8 subgroups
 - defined by 3 binary baseline covariates A, B, C
 - A, B, C high (+) or low (-)
 - describing burden of disease (BOD)
- Idea: patients with higher BOD at baseline show better efficacy

Approaches

Testing / Estimation

- Testing
 - typical for pre-planned analysis, pre-specified subgroups

- (Model-based) estimation
 - retrospective analyses
Testing Approaches

- Subgroup analysis formulated as a testing problem
 - Standard approach
 - test for treatment by subgroup interaction
 - If significant: proceed to estimate within subgroup effects
 - Pocock et al. (StatMed 2002), Assman et al. (Lancet 2000), Brookes et al. (J of Clin Epi 2004)
 - What’s often done
 - Fully stratified analysis: estimates for treatment effects in each subgroup without any reference to the data in other subgroups
 - This is problematic. Berry (Biometrics 1990), Grouin et al. (JBS 2005)
 - Recommendations
 - Careful pre-planning of subgroup analysis
 - Post-hoc analyses should address multiplicity problem

Testing approaches

- Post-hoc analyses suffer from
 - small sample sizes due to splitting up the data into subgroups
 - multiplicity problem

- This leads to
 - low power and
 - even wider confidence intervals (due to multiplicity adjustments) compared to fully stratified analysis
Estimation Approaches

- Various approaches to estimate subgroup effects
- Instead of looking at subgroups in a fully stratified way, it is assumed that information from other subgroups carries information about subgroup(s) of interest
- Subgroup effects θ_1, θ_2, ..., θ_G are related/similar to a certain degree.
 Requirement: a reasonable assumption/model
- Under such assumptions
 - results will be different from fully stratified analysis
 - due to borrowing from the other subgroups
 - \rightarrow modified point estimates
 - \rightarrow generally shorter confidence intervals

Shrinkage
Shrinkage

Y_1, Y_2, Y_G

Data from G subgroups

$\theta_1, \ldots, \theta_G$
effects

Unknown ‘Relationship/Similarity’

Range of possibilities:
- from same effects
- … to very different effects

The simplest model

- G subgroups with effects $\theta_1, \theta_2, \ldots, \theta_G$
- Why shrinkage?
 - Estimates are typically more spread out than true effects $\theta_1, \theta_2, \ldots, \theta_G$
 - Extreme stratified subgroups estimates are typically too extreme
- Simple shrinkage for subgroup analyses
 - $Y_g \sim N(\theta_g, \sigma^2_g), g = 1, \ldots, G$
 - $\theta_1, \theta_2, \ldots, \theta_G \sim N(\mu, \tau^2)$
 - See Louis (JASA 1984), Davies & Leffingwell (Contr Clin Trials 1990), both using empirical Bayes techniques
- Inference
 - Classical random-effects analyses
 - Empirical Bayes
 - Fully Bayesian (with priors for μ and τ)
Shrinkage

Sampling interpretation
- Model for similarity: $\theta_1, \ldots, \theta_G \sim F$
 - where F is an unknown distribution, e.g. $N(\mu, \tau^2)$
- True parameters are a sample from an underlying "population"
- This is somewhat difficult to justify:

 Are the selected subgroups a sample from a population of subgroups?

Exchangeability interpretation
- assumption that the joint probability distribution of $\theta_1, \ldots, \theta_G$ is invariant under permutations of the indices $1, \ldots, G$

 (This requires the willingness to talk about the parameters in a fully probabilistic way!)
- *de Finetti Theorem:* there is a distribution F such that $\theta_1, \ldots, \theta_G \sim F(\eta)$, i.e., $\theta_1, \ldots, \theta_G$ are iid given $F(\eta)$, and $\eta \sim P$ ("prior")
- There is no sampling interpretation needed here, but an indifference statement about the underlying parameters. A judgment call!
- Of course we don’t know what F is!

Note:
- we constantly use exchangeability assumptions about observations
- for parameters this is less common (except in Bayesian framework)
Shrinkage

Example 1 (Davis & Leffingwell 1990)

CHD deaths and myocardial infarction by subgroup and treatment group

<table>
<thead>
<tr>
<th>ECG LDL.C risk</th>
<th>rC</th>
<th>nC</th>
<th>rT</th>
<th>nT</th>
<th>pC</th>
<th>pT</th>
<th>logOR</th>
<th>logOR.se</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>HIGH</td>
<td>HIGH</td>
<td>7</td>
<td>23</td>
<td>5</td>
<td>26</td>
<td>30.4%</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>HIGH</td>
<td>low</td>
<td>6</td>
<td>32</td>
<td>4</td>
<td>38</td>
<td>18.8%</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>low</td>
<td>HIGH</td>
<td>3</td>
<td>19</td>
<td>1</td>
<td>21</td>
<td>15.8%</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>low</td>
<td>low</td>
<td>3</td>
<td>30</td>
<td>5</td>
<td>34</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>HIGH</td>
<td>HIGH</td>
<td>30</td>
<td>265</td>
<td>38</td>
<td>266</td>
<td>11.3%</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>HIGH</td>
<td>low</td>
<td>73</td>
<td>665</td>
<td>46</td>
<td>664</td>
<td>11%</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>low</td>
<td>HIGH</td>
<td>25</td>
<td>268</td>
<td>21</td>
<td>260</td>
<td>9.3%</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>low</td>
<td>low</td>
<td>40</td>
<td>598</td>
<td>35</td>
<td>597</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

\[
\text{logOR} = \log \left(\frac{r_T}{n_T-r_T} \right) - \log \left(\frac{r_C}{n_C-r_C} \right)
\]

\[
\text{logOR.se} = \left(\frac{1}{r_T} + \frac{1}{n_T-r_T} + \frac{1}{r_C} + \frac{1}{n_C-r_C} \right)^{1/2}
\]

From Davis & Leffingwell (Contr Clinical Trials, 1990)

Note: in the paper a relative risk (using logrank statistic) was used instead of the odds-ratio!

Simple Shrinkage

Example 1 (Davis & Leffingwell 1990): simple shrinkage estimates
Simple Shrinkage Model

Standard Calculus for Normal Data (known τ)

- **Data**
 \[Y_g \sim N(\theta_g, s_g^2) \quad g = 1, \ldots, G \]

- **Parameters**
 \[\theta_1, \ldots, \theta_C \sim N(\mu, \tau^2) \]

- **Shrinkage**: estimation for each study-specific effect θ_g is
 - a weighted average of study-specific and overall mean estimate
 \[\hat{\theta}_g = (1 - B_g)Y_g + B_g \hat{\mu} = \frac{\sum_g w_g Y_g}{\sum_g w_g} \quad w_g = (s_g^2 + \tau^2)^{-1} \]
 - with shrinkage factor
 \[B_g = \frac{s_g^2}{s_g^2 + \tau^2} \]
 - Small standard error (high precision) \Rightarrow little shrinkage
 - $\tau = 0$ (homogeneity) $\Rightarrow B = 1 \Rightarrow$ complete shrinkage (pooling)
 - τ very large $\Rightarrow B = 0 \Rightarrow$ no shrinkage (complete stratification)
Simple Shrinkage Model

Bayesian Formulas for Normal Data (known \(\tau \)), uniform prior for \(\mu \)

- Overall mean \(\mu \) is normally distributed with

 \[
 E(\mu \mid Y, \tau) = \frac{\sum \limits_g w_g Y_g}{\sum \limits_g w_g}, \quad \text{Var}(\mu \mid Y, \tau) = \frac{1}{\sum \limits_g w_g}
 \]

- Subgroup effect \(\theta_g \) is normally distributed with

 \[
 E(\theta_g \mid Y, \tau) = (1 - B_g)Y_g + B_g E(\mu \mid Y, \tau)
 \]

 \[
 \text{Var}(\theta_g \mid Y, \tau) = B_g \left\{ \tau^2 + B_g \text{Var}(\mu \mid Y, \tau) \right\}
 \]

Issues

- Even inference for the simplest model is challenging because \(\tau \) is unknown
 - Classical ways to address this
 - Bayesian approach requires a prior for \(\tau \). Inference is automatic/unique, but prior sensitivity should be assessed.

- Exchangeability for subgroup effects may be questionable
 - In particular if subgroups are defined by covariates that are thought to be predictive of the effects
 - We will look at the case of 3 binary covariates \(A,B,C \), defining 8 subgroups
General interaction model for 3 binary covariates

- Effect for subgroup g
 \[
 \theta_g = \tau + \\
 \gamma_1 I(A = \text{high}) + \gamma_2 I(B = \text{high}) + \gamma_3 I(C = \text{high}) \\
 + \delta_1 I(A = B = \text{high}) + \delta_2 I(A = C = \text{high}) + \delta_3 I(B = C = \text{high}) \\
 + \alpha I(A = B = C = \text{high})
 \]
 - τ fixed baseline (all covariates = 0)
 - γ first-order interactions
 - δ second-order interaction
 - α third-order interaction
 - Note: the full model without any structure on parameters corresponds to a fully stratified analysis (just a reparameterization!)

The Dixon-Simon Model

Dixon & Simon, Biometrics, 1990

- Effect for subgroup g
 \[
 \theta_g = \tau + \\
 \gamma_1 I(A = \text{high}) + \gamma_2 I(B = \text{high}) + \gamma_3 I(C = \text{high}) \\
 + \delta_1 I(A = B = \text{high}) + \delta_2 I(A = C = \text{high}) + \delta_3 I(B = C = \text{high}) \\
 + \alpha I(A = B = C = \text{high})
 \]
 - τ fixed baseline
 - Dixon-Simon: $\delta_1 = \delta_2 = \delta_3 = \alpha = 0$
 - $\gamma_1, \gamma_2, \gamma_3 \sim \text{Normal}(0, \omega^2)$ with prior on ω

Dixon-Simon Model

\[
\theta_g = \tau + \gamma_1 I(A = \text{high}) + \gamma_2 I(B = \text{high}) + \gamma_3 I(C = \text{high})
\]
Example 1

Simple shrinkage and Dixon-Simon model

- Effect for subgroup g
 \[
 \theta_g = \tau + \gamma_1 I(A = \text{high}) + \gamma_2 I(B = \text{high}) + \gamma_3 I(C = \text{high}) + \delta_1 I(A = B = \text{high}) + \delta_2 I(A = C = \text{high}) + \delta_3 I(B = C = \text{high}) + \alpha I(A = B = C = \text{high})
 \]
 - τ fixed baseline
 - $\gamma_1, \gamma_2, \gamma_3 \sim \text{Normal}(0, \omega_1^2)$
 - $\delta_1, \delta_2, \delta_3 \sim \text{Normal}(0, \omega_2^2)$
 - $\alpha \sim \text{Normal}(0, \omega_3^2)$
 - with priors on $\omega_1, \omega_2, \omega_3$
 - Possible constraints: $\omega_1 > \omega_2 > \omega_3$ (lower order interactions typically larger than higher order interactions)
Sargent & Hodges Model
… for subgroups defined by 3 binary covariates

- SANOVA (Smooth ANOVA) approach
 - Hodges, Sargent, Cui, Carlin (Technometrics 2007)

- Effect for subgroup g

$$\theta_g = \tau + \sum_{j=1}^{8} \alpha_j I(A = j) + \delta_j I(B = j) + \gamma_j I(C = j)$$

- Each of the 8 regression coefficients assumed independent
 - $\text{Normal}(0, \omega_j^2), j=1,\ldots,8$

- But the estimated variance components will be strongly driven by the hyperpriors

Extensions to multiple studies
… for subgroups defined by 3 binary covariates

- Effect for subgroup g in study s

$$\theta_{gs} = \tau + \sum_{j=1}^{8} \alpha_j I(A = j) + \delta_j I(B = j) + \gamma_j I(C = j)$$

- with exchangeable study effects $\lambda_s \sim \text{Normal}(0, \varphi^2), s=1,\ldots,S$

- … and various possible assumptions about the other parameters
 (Dixon-Simon, extended Dixon-Simon, …)
Case Study

Case study

Results

- Separate analyses for two trials
 - “small” trial 1
 - “large” trial 4

- Meta-analytic subgroup analyses: all seven trials

- Results for two models are shown
 - Dixon-Simon: exchangeable 1st order terms
 - extended Dixon-Simon: exchangeable 1st and higher order interaction terms
Case Study

Data for small and large study (study 1 and study 4)

Case Study

Two subgroup analyses for Study 1
Case Study
Two subgroup analyses for Study 4

- Fully stratified
- Dixon-Simon
- Extended Dixon-Simon

Two meta-analytic subgroup analyses

- Two models
 - Dixon-Simon + study effects (red)
 - Extended Dixon-Simon + study effects (blue)
 - Both with similar deviance information criterion (DIC)
 - Model diagnostics reasonably good
 - Qualitatively similar results
Concluding Remarks

- Post-hoc subgroup analyses with a small number of subgroups defined by clinically important baseline factors
- Testing approaches have clear limitations due to small sample sizes and multiplicity problems
- Inferential/estimation approaches based on shrinkage ideas are more promising
- Required: a “model” for the similarity of subgroup effects
 - Simple shrinkage model
 - Dixon-Simon model or extended version(s)
- Examples: different shrinkage models lead to similar answers
Concluding Remarks

- Further considerations
 - Model diagnostics: residual analyses, posterior predictive checks
 - Model selection (e.g. deviance information criterion DIC, Spiegelhalter et al, JRSS(B), 2002)
 - Recombination of subgroups to larger subgroups
 - Computations: e.g. WinBUGS

 BUT!

 - Deciding on an analysis after looking at the data is “dangerous, useful, and often done”; Jack Good (Good Thinking, 1983)
 - Recommendation: pre-define subgroups and use estimation approach based on shrinkage methods for the analysis

- Manuscript in preparation