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Synposis

• Previous examples / experiences
• New examples / building on past 

experiences.
• Conclusions / Discussion.



Previous examples:
• ASTIN

– Stroke
– Very little prior information
– Adaptive design, finding optimal dose for next 

subject.
– Normal Dynamic Linear Model (NDLM).
– Phase III-esque.

Reference:
Berry, D., Mueller, P., Grieve, A., Smith, M., Parke, T., Blazek, R., Mitchard, N., and Krams, M. (2001). 

Adaptive Bayesian designs for dose-ranging drug trials. In Case Studies in Bayesian Statistics, 
Volume V, (ed. C. Gatsonis, B. Carlin, and A. Carriquiry), pp. 99–181. Springer-Verlag, New York.



Previous examples:

• PD-217,014
– Pain
– Prior information on Placebo and active 

comparator.
– Adaptive design at cohort level, dropping 

doses.
– Normal Dynamic Linear Model (NDLM).

Reference:
Smith MK, Jones I, Morris, MF, Grieve AP, Tan K. (2006) Implementation of a Bayesian adaptive 

design in a proof of concept study. Pharmaceutical Statistics. 5; 39-50.



Previous examples:

• New treatment versus existing treatment.
– Lots of prior information on existing 

treatment.
– Summarise using Emax dose-response 

model.
– Calculate ED50 of new treatment compared 

to existing treatment (Relative potency).
– Bias randomisation towards new treatment.

Reference:
Smith MK, Marshall S. (2006) A Bayesian design and analysis for dose-response using informative 

prior information. J. Biopharmaceutical Statistics. 16; 695-709.



Building on past experience

• Example with little or no prior information.
– “NDLM” with Poisson data = DGLM 
– Dynamic Generalised Linear Model.

• Example with some prior information but gaps in 
our knowledge.
– Using what information we have
– Using optimal design theory.

• Example with LOTS of prior information.
– Do we even need to collect more data from the 

existing treatment or comparator?
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Example with no prior 
information



Setting

• New compound for Gastro-esophogeal
reflux disorder (GERD).
– Endpoint: # of reflux episodes (count).

• New mode of action.
• Preclinical results show promise, but little 

known of how this will work in humans.
• Some concern about the possibility of non-

monotonic dose-response.



Methods

• Normal Dynamic Linear Model (NDLM) 
used in stroke, pain for continuous 
outcomes.
– Flexible, data-driven smoother.
– Allows for non-monotonicity.

• Dynamic Generalised Linear Model 
(DGLM) developed for count data.
– Same basic structure.



DGLM results
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Discussion

• Pros:
– Flexible model.
– Doesn’t need much prior information up front.
– Few assumptions.
– Doesn’t assume monotonicity.

• Cons:
– No pharmacological meaning.
– More doses than standard design.
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Example with some prior 
information but gaps in 

our knowledge.



Prior information.
• Doses: 0, 3, 10, 30 & 100 mg
• 3 way XO
• 24 patients

• Now planning next Phase II study.



Model fitted to existing data

• Emax model fitted.
• E0 and Emax parameters well estimated.
• ED50 parameter not well characterised.

– BUT we know what range it is in.
• Need to find design to better estimate this 

parameter.
• AND robust to model uncertainty.
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• Fixed: PLAC & 75 mg
• Select 3 doses from: 
1, 2, 3, 5, 10, 15, 20, 25 & 50 mg

(120 dosing permutations)

Dosing options



• For each dosing combination:
– Add prior Ph IIa data
– Use PFIM1.2 algorithm[1] to 

assess optimality criteria.
– Select design which is most 

robust to model uncertainty.

[1] Retout & Mentré (2003). Optimisation of individual and population designs using 
Splus.  J. Pharmacokinet. Pharmacodyn., 30(6): 417-443.

Dose-selection



FIX 1 D1 D2 D3 FIX 2 Criterion
0 1 30 50 75 5.51
0 1 25 50 75 5.49
0 1 20 50 75 5.47
0 1 2 50 75 5.46
0 1 25 30 75 5.45

….
0 25 30 50 75 1.83

Using D-optimality criteria (at MLEs)
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Taking into account uncertainty
FIX1 D1 D2 D3 FIX2 Efficiency

5% 50% 95%
0 1 30 50 75 0.82 0.98 1.00
0 1 25 50 75 0.82 0.98 1.00
0 1 20 50 75 0.85 0.97 1.00
0 1 2 50 75 0.96 0.99 1.00
0 1 25 30 75 0.82 0.97 1.00
…
0 25 30 50 75 0.03 0.36 0.57



Discussion

• Not used here in an adaptive trial…
• BUT could be used easily in a trial with a 

planned interim.
• Using formal optimality criteria for learning 

about model parameters rather than “dose 
effectiveness”.

• Assumes Emax function & monotonicity.
– BUT D-optimality for any parametric model 

could be evaluated within PFIM.
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Example with lots of 
prior information.



Lead to Backup development

• Lots of prior information on lead 
compound.
– Phase II and Phase III efficacy.

• Developing backup
– Same class of compound.

• Fitted Emax model to Lead compound.
– Assuming same slope / Hill coefficient 

between lead and backup.



Model

• 3-parameter Emax model.

• RP = Relative potency
= ED50lead / ED50backup
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Design

• VERY limited budget
– Exploratory efficacy study for the backup compound.

• Don’t want to “waste” resources by restudying 
lead compound.
– Objective endpoint / biomarker.

• Rely on prior information for lead compound.
– Estimate relative potency for backup.
– “Historical control” (!).



Designs considered
Scenario Dose Levels for 

backup
Number of Subjects 

Per Dose
Total  N

1 MEDIUM 6 6

2 MEDIUM 8 8

3 MEDIUM 10 10

4 LOW and HIGH 4 8

5 LOW and HIGH 6 12

6 LOW, HIGH and 
MTD

6 18



Simulations

• Simulations run accounting for uncertainty 
in model parameters.
– Examine robustness of designs.
– Look for bias, precision of relative potency 

estimate (given known “true” value).
– Examine sensitivity to departures from 

assumptions.



Simulation results
Scenario Dose Levels 

for backup
Number 

of 
Subjects 
Per Dose

%CV of 
ED50 

estimate

Total  N

1 MEDIUM 6 76.2

72.2

70.5

63.9

59.4

48.7

6

2 MEDIUM 8 8

3 MEDIUM 10 10

4 LOW and 
HIGH

4 8

5 LOW and 
HIGH

6 12

6 LOW, HIGH 
and MTD

6 18



Conclusions

• We can recover sufficient information from 
designs with less than 3 doses to fit Emax
models (with 3 parameters).
– Depends on level of confidence required.

• Relies heavily on informative prior 
information for certain parameters e.g. E0, 
Emax.

• Again, this study not run as adaptive, but it 
could be…



Discussion.

• ASSUMPTION: Nothing has changed 
since lead compound was developed.
– If this assumption does not hold then AVOID 

this type of design!!
• If emerging data appear to be “different”

from our prior experience then we should
adapt to recover information about E0, 
Emax from the lead compound.
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Conclusions



Conclusions

• Even a little prior information goes a long way…
• Especially in adaptive designs

– Refining the dose-range as you go along.
– Dropping doses.
– Finding “optimal” design points.
– Accumulating knowledge from the current trial.
– Reusing information from previous compounds.
– Efficient trial designs.
– Adapting to salvage information when prior 

assumptions do not hold.



…And in practice?

• Adaptive designs are great at killing drugs.

• LOTS of examples where we stop early 
and conclude no effect.

• FEW examples where we find very 
positive outcomes early.
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