Case studies of Bayesian adaptive designs using various amounts of prior information

Mike K Smith, Kate Hargreaves, Patrick J Johnson, Gordon Graham, Martin Boucher. (PGRD, Sandwich, UK)

Synposis

- Previous examples / experiences
- New examples / building on past experiences.
- Conclusions / Discussion.

Previous examples:

• ASTIN

- Stroke
- Very little prior information
- Adaptive design, finding optimal dose for next subject.
- Normal Dynamic Linear Model (NDLM).
- Phase III-esque.

Reference:

Berry, D., Mueller, P., Grieve, A., Smith, M., Parke, T., Blazek, R., Mitchard, N., and Krams, M. (2001). Adaptive Bayesian designs for dose-ranging drug trials. In *Case Studies in Bayesian Statistics, Volume V*, (ed. C. Gatsonis, B. Carlin, and A. Carriquiry), pp. 99–181. Springer-Verlag, New York.

Previous examples:

- PD-217,014
 - Pain
 - Prior information on Placebo and active comparator.
 - Adaptive design at cohort level, dropping doses.
 - Normal Dynamic Linear Model (NDLM).

Reference:

Smith MK, Jones I, Morris, MF, Grieve AP, Tan K. (2006) Implementation of a Bayesian adaptive design in a proof of concept study. *Pharmaceutical Statistics*. **5**; 39-50.

Previous examples:

- New treatment versus existing treatment.
 - Lots of prior information on existing treatment.
 - Summarise using Emax dose-response model.
 - Calculate ED50 of new treatment compared to existing treatment (Relative potency).
 - Bias randomisation towards new treatment.

Reference:

Smith MK, Marshall S. (2006) A Bayesian design and analysis for dose-response using informative prior information. *J. Biopharmaceutical Statistics*. **16**; 695-709.

Building on past experience

- Example with little or no prior information.
 - "NDLM" with Poisson data = DGLM
 - Dynamic Generalised Linear Model.
- Example with some prior information but gaps in our knowledge.
 - Using what information we have
 - Using optimal design theory.
- Example with LOTS of prior information.
 - Do we even need to collect more data from the existing treatment or comparator?

Example with no prior information

Setting

• New compound for Gastro-esophogeal reflux disorder (GERD).

- Endpoint: # of reflux episodes (count).

- New mode of action.
- Preclinical results show promise, but little known of how this will work in humans.
- Some concern about the possibility of nonmonotonic dose-response.

Methods

- Normal Dynamic Linear Model (NDLM) used in stroke, pain for continuous outcomes.
 - Flexible, data-driven smoother.
 - Allows for non-monotonicity.
- Dynamic Generalised Linear Model (DGLM) developed for count data.
 - Same basic structure.

DGLM results

Discussion

- Pros:
 - Flexible model.
 - Doesn't need much prior information up front.
 - Few assumptions.
 - Doesn't assume monotonicity.
- Cons:
 - No pharmacological meaning.
 - More doses than standard design.

Example with some prior information but gaps in our knowledge.

Prior information.

- Doses: 0, 3, 10, 30 & 100 mg
- 3 way XO
- 24 patients

• Now planning next Phase II study.

Model fitted to existing data

- Emax model fitted.
- E0 and Emax parameters well estimated.
- ED50 parameter not well characterised.
 BUT we know what range it is in.
- Need to find design to better estimate this parameter.
- AND robust to model uncertainty.

Model fit ± 90 % C.I.

Dose (mg)

Dosing options

- Fixed: PLAC & 75 mg
- Select 3 doses from:

1, 2, 3, 5, 10, 15, 20, 25 & 50 mg

(120 dosing permutations)

Dose-selection

- For each dosing combination:
 - Add prior Ph IIa data
 - Use PFIM1.2 algorithm^[1] to assess optimality criteria.
 - Select design which is most robust to model uncertainty.

[1] Retout & Mentré (2003). Optimisation of individual and population designs using Splus. *J. Pharmacokinet. Pharmacodyn.*, 30(6): 417-443.

Using D-optimality criteria (at MLEs)

FIX 1	D1	D2	D3	FIX 2	Criterion
0	1	30	50	75	5.51
0	1	25	50	75	5.49
0	1	20	50	75	5.47
0	1	2	50	75	5.46
0	1	25	30	75	5.45
0	25	30	50	75	1.83 👝

Taking into account uncertainty

FIX1	D1	D2	D3	FIX2	Efficiency		
					5%	50%	95%
0	1	30	50	75	0.82	0.98	1.00
0	1	25	50	75	0.82	0.98	1.00
0	1	20	50	75	0.85	0.97	1.00
0	1	2	50	75	0.96	0.99	1.00
0	1	25	30	75	0.82	0.97	1.00
0	25	30	50	75	0.03	0.36	0.57

Discussion

- Not used here in an adaptive trial...
- BUT could be used easily in a trial with a planned interim.
- Using formal optimality criteria for learning about model parameters rather than "dose effectiveness".
- Assumes Emax function & monotonicity.
 - BUT D-optimality for any parametric model could be evaluated within PFIM.

Example with lots of prior information.

Lead to Backup development

- Lots of prior information on lead compound.
 - Phase II and Phase III efficacy.
- Developing backup
 - Same class of compound.
- Fitted Emax model to Lead compound.
 - Assuming same slope / Hill coefficient between lead and backup.

Model

• 3-parameter Emax model.

$$Response_{i} = EO - \frac{(Emax*dose_{i})}{((ED50x/RP) + dose_{i})} + e_{i}$$

$$e_i \sim N(0, \sigma^2)$$

RP = Relative potency
 = ED50_{lead} / ED50_{backup}

Design

- VERY limited budget
 - Exploratory efficacy study for the backup compound.
- Don't want to "waste" resources by restudying lead compound.
 - Objective endpoint / biomarker.
- Rely on prior information for lead compound.
 - Estimate relative potency for backup.
 - "Historical control" (!).

Designs considered

Scenario	Dose Levels for backup	Number of Subjects Per Dose	Total N
1	MEDIUM	6	6
2	MEDIUM	8	8
3	MEDIUM	10	10
4	LOW and HIGH	4	8
5	LOW and HIGH	6	12
6	LOW, HIGH and MTD	6	18

Simulations

- Simulations run accounting for uncertainty in model parameters.
 - Examine robustness of designs.
 - Look for bias, precision of relative potency estimate (given known "true" value).
 - Examine sensitivity to departures from assumptions.

Simulation results

Scenario	Dose Levels for backup	Number of Subjects Per Dose	%CV of ED50 estimate	Total N
1	MEDIUM	6	76.2	6
2	MEDIUM	8	72.2	8
3	MEDIUM	10	70.5	10
4	LOW and HIGH	4	63.9	8
5	LOW and HIGH	6	59.4	12
6	LOW, HIGH and MTD	6	48.7	18

Conclusions

• We can recover sufficient information from designs with less than 3 doses to fit Emax models (with 3 parameters).

– Depends on level of confidence required.

- Relies heavily on informative prior information for certain parameters e.g. E0, Emax.
- Again, this study not run as adaptive, but it could be...

Discussion.

- **ASSUMPTION:** Nothing has changed since lead compound was developed.
 - If this assumption does *not* hold then AVOID this type of design!!
- If emerging data appear to be "different" from our prior experience then we *should* adapt to recover information about E0, Emax from the lead compound.

Conclusions

Conclusions

- Even a little prior information goes a long way...
- Especially in adaptive designs
 - Refining the dose-range as you go along.
 - Dropping doses.
 - Finding "optimal" design points.
 - Accumulating knowledge from the current trial.
 - Reusing information from previous compounds.
 - Efficient trial designs.
 - Adapting to salvage information when prior assumptions do not hold.

...And in practice?

• Adaptive designs are great at killing drugs.

• LOTS of examples where we stop early and conclude no effect.

• FEW examples where we find very positive outcomes early.

