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Simple cases, at study lev

Bayesian PoS for a PK study where variability/uncertainty is high
Assumption :

True ratio assumed to be around 1,12 (with uncertainty as 90%CI= 1,12 [0,93 — 1,35])
SDw assumed around 0,35

Predictive and conditional powers vs. sample size (Formulation D)
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Objective:

Assess our current practices

Discuss our expectations about the contribution of the statisticians, as
well as the Statistical Leaders, into Decision Making

Define how to achieve this together
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Decision-making in drug development

At a given time point, making an optimal choice between several alternatives based on
the available information and preferences of the decision maker

Study level
e Choice of the dose
e Population, design (sample size, control arms, duration)
e Stop/continue at interim analyses

Development level
Strategy: indication, population, Number of studies,
timing of the studies
Go/No Go at strategic milestones
Due diligences
Global project value assessment

Portfolio level
* Go/No Go and selection of the projects
e Resource allocation
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number of randomised patients

Bayesian modeling for end of study prediction

Recruitment prediction

Date of end of recruitment estimated with a 95%Cl

Prediction of patient recruitment over time

800+

600+

400+

200+

01 mars 154

01 avr. 15 4

01 mai 15 +

01 juin 15 -

01 juil. 15 4

01 aolt 15 4
01 sept. 154

01 oct. 15 4

01 nov. 15+

01 déc. 154

01 janv. 16=

01 févr. 16 +

01 mars 16+

01 avr. 16 4

01 mai 16 -

01 juin 16 -

01 juil. 16 -

01 aolt 16 -
01 sept. 164

01 oct. 16 -

01 nov. 16 4

01 déc. 16 -

01 janv. 174
01 févr. 17

01 mars 17+

Number of events

40 60 80 100

20

Target nb of events prediction

Prediction of Progression-Free Survival

Bayesian Modelling

- e
- =
- ’_.—’
. 1
/’ r"
f, ,r”
e i
. -
& -
/, f/ .
o o — | Median (50%)
- -
o == 20%/80%

Date at which 100 events will be observec (20%) : 2017-10-22
Date at which 100 events will be observed (50%) : 2018-01-18
Date at which 100 events will be observed (80%) : 2018-06-18

01 oct. 16 —

01 déc. 16

01 féwr. 17

01 avr. 17

01juin 17
01 aolt 17
01 oct. 17
01 déc. 17
01 féwvr. 18
01 avr. 18
01 juin 18




AstraZeneca’s decision-making framew
Software developed by Cy:

Ex.: Go/No Go criteria for neutrophil differential used as a biomarker for CPOD

1) Decision framework (Go/No Go/ )
LRV: Lower Reference value — TV: Target value 3) Results: the observed level of reduction
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Predictive Probability of Success of Phase 3 based on
Phase 2 results and historical data (fictive case-study)
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- PPoS helps decision-making at strategic milestones
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Comparison of Portfolios
Basic fictive example

Portfolio strategies (with/without partner)

" “Internal portfolio”: 4 projects owned internally, with for every project: '

NPV Mo NPy (Mo Risk and value profiles

b ~= Partnered portfolio
eNPY Project =36 M € 10 50 s
eNPV Portfolio =364 = 144 M €
v “Partnered portfolio”: 8 projects with 50% of the costs and revenues shared, with -
forevery project: NPV (MEuros)  eNPV (M Euros E
Moderat ‘
. oderate
SUCCESS 25 125
eNPV Project =18 M € IZ Great success 75 75
eNPY Portfolio =18x8 = 144 M €
I 1 i i i 1
NPV: Net Present Value 0 0 4 80 8 100
eNPV: Expected Net Present Value Cumulative Probability Distribution (%)
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Survey: Use of Quantitative decision making
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Survey: Frequency, Approaches and Applications
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Points for discussi

Confirm the strategic importance for Statistical teams to
develop Quantitative supports for decision making

Promote the position of Statistical teams/leaders to generate
Indicators and manage their interpretation and impact
Available for sharing methods and experiences

Support the proposal of an EFSPI SIG to share

e Change in mindset/culture and maybe organization

* Decision criteria

e |ssues, methodologies, statistical methods/tools, interpretation & impacts
 Examples of applications and stakeholders

e (Fictive) Case studies and training(s)

e Leadership : tbd

e Members: Sanofi, Servier, ....... tbd
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