Safety Analyses: The Cinderella of Biostatistics?

\ Regulatory perspective \n
EFSPi Statistics Leaders Meeting

23.07.2020

PD Dr. Benjamin Hofner
Head of Section Biostatistics
Disclaimer

Views are my own and do not necessarily represent the views of the Paul-Ehrlich-Institut (PEI), the European Medicines Agency (EMA) or any other European regulatory agency (NCA).
Of note, I am by no means a safety expert!

Focus of the talk:
- MAA, not PhV [PSUR, …]
- Mainly on statistical issues
- Some clinical aspects as well
- Oncological examples
Background

- Usually no or little statistical involvement in safety assessments
 - Involvement only upon request in more complicated situations
- Mostly descriptive analyses are discussed based on clinical reasoning

- Assessment of efficacy considered “easier” than safety
 - Adequately pre-planned
 - Clear hypotheses
Basics on Safety Analyses

- Different safety events such as
 - AE (adverse event)
 - SAE (serious adverse event ≠ severe AE)
 - AESI (AE of special interest)
 - Treatment emergent AEs
 - Treatment related AEs
 - ...

- AEs are grouped by MedDRA terms
 - For signal detection preference for SOC, as PT usually to granular
 - AEs are grouped by maximum severity (grade), e.g.,
 - „Any AE“
 - „Grade 3-4 AE“ (= severe or life-threatening)

Source: https://www.meddra.org/how-to-use/basics/hierarchy
Generic Grading based on NCI CTCAE
Common Terminology Criteria for Adverse Events

- **Grade 1** Mild
 asymptomatic or mild symptoms; clinical or diagnostic observations only; intervention not indicated.

- **Grade 2** Moderate
 minimal, local or noninvasive intervention indicated; limiting age-appropriate instrumental ADL*.

- **Grade 3** Severe or medically significant but not immediately life-threatening
 hospitalization or prolongation of hospitalization indicated; disabling; limiting self care ADL**.

- **Grade 4** Life-threatening consequences
 urgent intervention indicated.

- **Grade 5** Death related to AE.

(A Semi-colon indicates 'or' within the description of the grade.)
Standard Presentation

- AEs per arm are **usually** presented as **frequency tables**
 - Usually in groups (SOC/PT)
 - Any AE, Grade 3-4, SAE, TRAE, Death, AESI, AE leading to dose modification, AE leading to discontinuation
 - **Sometimes filtered** based on absolute frequencies, size of difference between arms, p-values, ...

- **Sometimes** more **advanced methods** such as incidence proportions and time to first event

- Additionally immunogenicity, safety in special populations, ...
Examples of Standard Safety Tables

Overview of Safety Profile*

<table>
<thead>
<tr>
<th></th>
<th>Arm A</th>
<th>Arm B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(94.7%)</td>
<td>(90.2%)</td>
</tr>
<tr>
<td>Total number of events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment-related AE</td>
<td>(85.2%)</td>
<td>(60.5%)</td>
</tr>
<tr>
<td>Grade 3-4 AE</td>
<td>(52.5%)</td>
<td>(30.1%)</td>
</tr>
<tr>
<td>Treatment-related Grade 3-4 AE</td>
<td>(44.1%)</td>
<td>(12.8%)</td>
</tr>
<tr>
<td>Grade 5 AE</td>
<td>(4.2%)</td>
<td>(3.8%)</td>
</tr>
<tr>
<td>Treatment-related Grade 5 AE</td>
<td>(0.4%)</td>
<td>(28.3%)</td>
</tr>
<tr>
<td>Serious Adverse Event</td>
<td>(28.5%)</td>
<td>(28.3%)</td>
</tr>
<tr>
<td>Treatment-Related Serious Adverse Event</td>
<td>(15.6%)</td>
<td>(8.4%)</td>
</tr>
<tr>
<td>AE leading to any treatment withdrawal</td>
<td>(16.3%)</td>
<td>(6.3%)</td>
</tr>
<tr>
<td>- Component 1</td>
<td>(3.8%)</td>
<td>(6.3%)</td>
</tr>
<tr>
<td>- Component 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Component 3</td>
<td>(5.7%)</td>
<td>(6.3%)</td>
</tr>
<tr>
<td>- Component 4</td>
<td>(10.6%)</td>
<td></td>
</tr>
<tr>
<td>- Component 5</td>
<td>(4.9%)</td>
<td></td>
</tr>
<tr>
<td>AE leading to dose modification/interruption</td>
<td>(44.1%)</td>
<td>(28.3%)</td>
</tr>
<tr>
<td>- Component 1</td>
<td></td>
<td>(25.5%)</td>
</tr>
<tr>
<td>- Component 2</td>
<td>(10.3%)</td>
<td>(25.5%)</td>
</tr>
<tr>
<td>- Component 3</td>
<td>(24.3%)</td>
<td>(0.3%)</td>
</tr>
<tr>
<td>- Component 4</td>
<td>(29.3%)</td>
<td>(0.3%)</td>
</tr>
<tr>
<td>- Component 5</td>
<td>(14.1%)</td>
<td>(0.3%)</td>
</tr>
</tbody>
</table>

* Edited to remove product names and absolute frequencies
Examples of Standard Safety Tables

Any AE with ≥ 10% frequency by SOC / PT*

<table>
<thead>
<tr>
<th>MedDRA System Organ Class</th>
<th>Arm A (N=)</th>
<th>Arm B (N=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(53.9%)</td>
<td>(67.8%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(52.0%)</td>
<td>(31.9%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>(33.0%)</td>
<td>(12.6%)</td>
</tr>
<tr>
<td>Constipation</td>
<td>(21.7%)</td>
<td>(10.2%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>(12.6%)</td>
<td>(10.2%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>(12.6%)</td>
<td>(6.3%)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(51.2%)</td>
<td>(17.5%)</td>
</tr>
<tr>
<td>Anemia</td>
<td>(47.5%)</td>
<td>(15.4%)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>(20.1%)</td>
<td>(1.4%)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>(16.7%)</td>
<td>(2.4%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(30.0%)</td>
<td>(38.3%)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>(17.5%)</td>
<td>(12.5%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>(17.5%)</td>
<td>(12.5%)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>(8.7%)</td>
<td>(18.6%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(16.0%)</td>
<td>(20.6%)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>(9.9%)</td>
<td>(14.0%)</td>
</tr>
<tr>
<td>Cough</td>
<td>(9.9%)</td>
<td>(11.9%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(15.6%)</td>
<td>(15.4%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>(15.6%)</td>
<td>(15.4%)</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of patients with at least one adverse event</td>
<td>(5.7%)</td>
<td>(10.5%)</td>
</tr>
<tr>
<td>Alanine aminotransferase increased</td>
<td>(5.7%)</td>
<td>(10.5%)</td>
</tr>
</tbody>
</table>

* Edited to remove product names and absolute frequencies
Some Issues with Standard Presentation

- Plethora of different tables and analyses but not well connected
 - Connection only visible in patient narratives
 - No distinction between one AE or multiple AEs per patient, per SOC, …
- Hard to assess

- Further issues see next slides
Example
Example
Earlier onset, same duration, same grade
Example

Same onset, same duration, same grade, but recurring
Example
Same onset, same grade, longer duration
Example
Same onset of maximum severity, same maximum grade, complex path
Estimands
Goal
Define clinically relevant estimand

- Estimand should be defined upfront for important safety endpoints
 - Variable and summary measure should be defined in a sensible and clinically meaningful way
 - Patient population needs some thoughts
 - Role of different intercurrent events needs to be carefully considered

- Of note:
 - Estimands not only relevant for primary / key secondary efficacy endpoints
 - Estimands do not rely on statistical testing, estimation is a suitable goal

- Currently, we often implicitly use a while-on-treatment estimand (+ margin after last dose) for safety
 - Population, statistical measure and treatment of ICE often not well defined
Questions

- What about…
 - … timing of AEs?
 - … duration of AEs?
 - … severity of AEs?
 - … reversibility of AEs?
 - … recurrence of AEs?
 - … the impact of dose (reduction)?
 - … timing and frequency of treatment?
 - … intercurrent events such as rescue treatment?
 - … (unequal / short) duration of follow up?
 - … competing risks (e.g. death)?
Revised / reconsidered treatment of safety data, especially in the light of immune modulators in comparison to conventional cytotoxic drugs (chemotherapy)

“The aim of this revision is to find ways on how to report AEs in order to improve the understanding of the toxicity and tolerability profiles of medicinal products. This could include: **incidence** and **prevalence per period of time**, **time to event**, **time-adjusted analyses** for AEs (e.g. by different cut-off dates or event rates per 100 patient-years) if justified based on the event rate profiles over time. It is **not anticipated that all AEs would need to be reported in such detail**, however. Selection criteria could for example include events leading to dose reduction or interruption, SAEs, events that are likely to affect tolerability and events of special interest, e.g. based on pre-clinical data.”

(Concept paper, EMA/130525/2015)
Timing and duration of AEs

- “[AEs] (…) may for example differ importantly depending on how the incidence, prevalence and severity change with time on treatment, and on the possibility to alleviate the ADR by dose reduction or interruption.”
- “[AEs] (…) are most prominent during the first to second treatment cycle(s), following which tolerance appears to develop. On the other hand there is cumulative toxicity, of consequence mainly to those who have long-term treatment benefit.”

- Timing and persistence of AEs needs to be taken into account
- Impact of intercurrent events such as dose reduction (and consequence for safety profile)

Differences in time on treatment

- “A common problem (…) when the experimental drug shows substantially improved efficacy and patients therefore stay longer on the experimental arm than on the comparator arm. This introduces a bias by observation time if the collection of AEs is stopped at the time of study drug discontinuation or shortly thereafter.”
- Important to take into account if differences are expected

Based on slides from Yolanda Barbachano - MHRA
Treatment discontinuation / treatment switching
- “Extended safety data collection, including off-therapy and on-new therapy, may therefore be included in the study design”
- Treatment policy estimand?

Different / multiple estimands needed for different questions
- “For key events, i.e. events that are common and affect tolerability, safety by treatment cycle is often of value. For example, fatigue or diarrhoea grade 3 for limited periods of time may not affect tolerability to a great degree, while long-term fatigue or diarrhoea grade 2 may be a major issue to the benefit-risk balance”
- Combination of duration and severity might be of relevance
- Depending on safety endpoint

Landmark analyses
- “All [MAAs] (...) should include cumulative adverse event rates from the pivotal study(ies) at the specified time points 3 months, 6 months and 1 year, in order to facilitate regulatory safety assessment.”
- If estimand is clearly defined, comparison across trials is easier, particularly useful for SAT
PubMed Search - „estimand AND safety“

- Only 17 hits
- Mostly on efficacy estimands (and standard safety analysis)
- Some observational trials
- Only 3 papers really discuss estimands for safety in RCTs
- In comparison: 213 hits for „estimand“ (without restriction to safety)
- Of note: Only one occurrence of „safety“ in ICH E9 (R1) addendum

- A lot to be done.
Statistical Testing

- Statistical testing for differences often not suitable
 - Standard H_0 (no difference between arms) is not applicable
 - No primary endpoint with clear hypothesis

- Actually, often we want to have reassurance that there is no clinically relevant difference in safety
 - „Equivalence Testing“

- Sometimes significant improvement in safety endpoints of relevance (e.g. for mortality or other severe endpoints)
 - Standard approach to multiplicity as for efficacy endpoints
 - see Multiplicity GL (EMA/CHMP/44762/2017)
Statistical Testing

to aid flagging safety signals

- Flagging **only** significant differences not enough
 - Multiplicity correction even anti-conservative
 - Important but rare AEs might not be flagged but could be highly relevant
 - Yet, „multiplicity“ is of course an issue and needs to be taken into account when interpreting results.

- See also Multiplicity GL (EMA/CHMP/44762/2017) which briefly addresses safety
Subgroup Analyses
Subgroup Analyses

- Should be used for safety as well to be able to assess subgroup differences in efficacy in conjunction with safety
- Further complicates assessment as it increases the chance for spurious signals or spurious lack of signal for rare AEs
- Briefly mentioned in Subgroup GL (EMA/CHMP/539146/2013)

- **Pre-specify** important safety endpoints and **relevant subgroups** and discuss expected outcome *a priori*
 - Clinical and biological justification very important
Benefit / Risk
Benefit / Risk

- For patients weighing of risks and benefits usually a very personal decision not to be confused with regulatory B/R

- PROs for safety events (e.g. PRO-CTCAE)
 - take impact of AEs on patients into account
 - resolve some of the issues I previously discussed
 - might also be of relevance in regulatory assessment
Regulatory Benefit / Risk Assessment

- Numbers are usually based on different populations
 - „PP“ vs „ITT“
- Intercurrent events such as rescue medication might be treated differently for efficacy and safety
 - Comparison problematic from statistical point of view
- Difficult to appropriately *weight* benefits and risks
 - Comparisons are usually „informal“, e.g. based on the Effects Table
 - Further (semi-)quantitative methods are hardly ever used
Example of Effects Table

<table>
<thead>
<tr>
<th>Effect Description</th>
<th>Unit</th>
<th>Pembrolizumab 200 mg QW3</th>
<th>Chemotherapy</th>
<th>Uncertainties / Strength of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS</td>
<td>months (95% CI)</td>
<td>16.4 (14.0, 19.7)</td>
<td>12.1 (11.3, 13.3)</td>
<td>Efficacy not demonstrated for the TPS 1-49% subgroup (target population of the current extension of indication) OS in TPS 1-49%; median OS 13.4 (10.7, 16.9) vs 12.1 (11.0, 14.0) months; HR 0.90 (0.76, 1.06)</td>
</tr>
<tr>
<td>PFS</td>
<td>median months (95% CI)</td>
<td>5.4 (4.3, 6.2)</td>
<td>6.6 (6.3, 7.3)</td>
<td>PFS not reaching statistical significance PFS in TPS 1-49%; median PFS 4.2 (4.1, 5.2) vs 6.8 (6.3, 8.1) months; HR 1.27 (95%CI 1.08, 1.50)</td>
</tr>
<tr>
<td>Unfavourable Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>Drug-related AEs</td>
<td>%</td>
<td>63.7</td>
<td>51.3</td>
</tr>
<tr>
<td>Grade 3-5 AEs</td>
<td>%</td>
<td>51.3</td>
<td>18.4</td>
<td>41.1</td>
</tr>
<tr>
<td>Drug-related G 3-5 AEs</td>
<td>%</td>
<td>49.4</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>SAEs</td>
<td>%</td>
<td>49.4</td>
<td>19.7</td>
<td>30.4</td>
</tr>
<tr>
<td>Death due to AEs</td>
<td>%</td>
<td>28.4</td>
<td>20.4</td>
<td>14.8</td>
</tr>
<tr>
<td>Discontinuation due to AEs</td>
<td>%</td>
<td>16.4</td>
<td>16.4</td>
<td>9.3</td>
</tr>
<tr>
<td>Discontinuation due to SAEs</td>
<td>%</td>
<td>16.4</td>
<td>16.4</td>
<td>9.3</td>
</tr>
<tr>
<td>Selected AEs</td>
<td>Pneumonitis</td>
<td>%</td>
<td>8.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>%</td>
<td>8.2</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Summary

- Safety assessment often based on
 - plethora of „unconnected“ (and potentially statistically inadequate) frequency tables

- Statistical considerations not well developed
 - partly due to imprecise / inappropriate questions („equivalence of safety“)
 - complexity of situation
 - partly due to rare events

- Multiple analyses (from different angles) required to provide a good overview and understanding of all safety aspects
Outlook

- Graphical display instead of extensive tables
 - Use graphics such as forest plots to show safety profiles

- Appropriate statistical methods / summary measures are urgently needed
 - Training of clinicians and statisticians dealing with safety needed

- Estimand framework need to be further developed and discussed in the light of safety analyses
 - Clinical and statistical input needed

- Do we need a paradigm shift in safety reporting?