Model-based extrapolation between dosing regimens

Varying regimens in oncology Phase I dose-escalation trials

Sebastian Weber, Associate Director
Basel, EFSPiI Workshop
25th September 2018
Acknowledgements

- Burak Kürsad Günhan
- Tim Friede
- Abdelkader Seroutou
Oncology Phase I Dose-Escalation

• Disease severity mandates efficacy maximization
• Aim is to find maximum tolerated dose (MTD)
• Adaptive trial design
 • Sequential enrollment of small cohorts of 3-6 patients
 • Treatment for 1 cycle
 • Assessment of cycle 1 trial data once cycle 1 completes
 • Dose of next cohort must ensure patient safety
• Challenges for statistical approaches
 • Data sparsity
 • (Drug combinations)
 • Only consideration of a dose escalation... Dose regimens??
Everolimus Example

- Phase Ib dose-escalation in small-cell lung cancer

- Explored two regimens
 - Daily dosing: 2.5 mg/day, 5.0 mg/day
 - Weekly dosing: 20 mg/week, 30 mg/week

- Each regimen analyzed separately

- MTD declared for daily 2.5 mg

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose [mg/admin]</th>
<th>N</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>daily</td>
<td>2.5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>daily</td>
<td>5.0</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>weekly</td>
<td>20.0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>weekly</td>
<td>30.0</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>
Bayesian Logistic Regression Model (BLRM)

- Statistical model
 - Data: # of patients with DLT r_i per cohort with n_i patients at dose d_i
 - Binomial likelihood with DLT probability $\pi_i(d_i)$
 - Logit-link regression: intercept, positive slope with $\log\left(\frac{d_i}{d^*}\right)$

- Escalation with overdose control (EWOC)
 \[P(\pi(d) \geq 0.33) < 0.25 \]

- Regimens out of scope

- Ad-hoc limitations
 - Need for down-weighting \Leftrightarrow efficiency loss
 - 2-step approach leads to one BLRM per regimen

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose [mg/admin]</th>
<th>Dose [mg/day]</th>
<th>N</th>
<th>DLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>daily</td>
<td>2.5</td>
<td>2.50</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>daily</td>
<td>5.0</td>
<td>5.00</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>weekly</td>
<td>20.0</td>
<td>20/7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=2.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weekly</td>
<td>30.0</td>
<td>30/7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>=4.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. Weber, AEA, Analytics
Time to event pharmacokinetic model (TITE-PK)

- Time to first event model using an exposure metric
- Exposure metric based on drug pharmacokinetics
- Use of planned regimen and known PK parameters
TITE-PK model
Time-varying Poisson process

- Hazard at time t proportional to exposure metric $E(t)$
 $$h(t) = \beta E(t)$$

 $$H(t) = \int_0^t h(t') \, dt' = \beta \text{AUC}_E(t)$$

 $$S(t) = P(T > t) = \exp(-H(t))$$

- Follow-up until time t^* end of cycle 1
- Dosing regimen
 - Dose d
 - Frequency of dosing f
- EWOC metric for cycle 1 of a regimen
 $$P(T \leq t^* | d, f) = 1 - P(T > t^* | d, f)$$

 $$= 1 - S(t^* | d, f)$$
Everolimus Daily Regimen
Reanalysis Daily-\(\rightarrow\)Weekly Switch

- All models have matched priors
- Posteriors with daily data
- Posteriors with daily+weekly data
Everolimus Daily Regimen Reanalysis Daily->Weekly Switch

- All models have matched priors
- Posteriors with daily data
- Posteriors with daily+weekly data

[Graphs showing DLT probabilities across different doses for prior and posterior models]
Everolimus Daily Regimen
Reanalysis Daily->Weekly Switch

- All models have matched priors
- Posteriors with daily data
- Posteriors with daily+weekly data

S. Weber, AEA, Analytics

NOVARTIS
Conclusions

• Model based extrapolation
 • Enables more efficient use of trial data
 • Potentially enhances available historical data (collected under different regimens)
 • Requires assumptions here: Pharmacokinetic principles

• Advantages of TITE-PK
 • No more need for ad-hoc approaches used to combine different dosing regimens ⇔ easier to apply + greater statistical efficiency
 • Greater flexibility for escalation trials
 • Coherent (single-model) dose-toxicity model for multiple regimens
 • Operationally feasible
Thank you
References

