Complementing evidence from a small scale RCT by registry data in a rare disease setting

Christian Röver and Tim Friede

Department of Medical Statistics,
University Medical Center Göttingen,
Göttingen, Germany

September 25, 2018

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602144.
Creutzfeld-Jakob disease (CJD): a (very) rare disease

A small randomized trial (N=12) on the use of Doxycycline was conducted (endpoint: survival), registry data (N=88) was considered in addition (analysis stratified by propensity scores)

heterogeneity anticipated
both estimates were combined (using standard random-effects meta-analysis)¹

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.63</td>
<td>[0.40, 0.99]</td>
</tr>
</tbody>
</table>

normal-normal hierarchical model (NNHM):

\[
y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2), \\
\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \ldots, k)\]

Data:
- estimates \(y_i \)
- standard errors \(\sigma_i \)

Parameters:
- study-specific effects \(\theta_i \)
- overall effect \(\mu \)
- heterogeneity \(\tau \)

(Bayesian approach: prior specification for \(\mu \) and \(\tau \))
Random-effects meta-analysis

- normal-normal hierarchical model (NNHM):
 \[
 y_i \mid \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),
 \]
 \[
 \theta_i \mid \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad (\text{for } i = 1, \ldots, k)
 \]

Data:
- estimates \(y_i \)
- standard errors \(\sigma_i \)

Parameters:
- study-specific effects \(\theta_i \)
- overall effect \(\mu \)
- heterogeneity \(\tau \)

- (Bayesian approach: prior specification for \(\mu \) and \(\tau \))

Data:

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.65</td>
<td>[0.29, 1.53]</td>
</tr>
</tbody>
</table>

HR

0.25 0.50 1.0 2.0

0.61 0.84 0.65

[0.37, 0.99] [0.24, 2.90] [0.29, 1.53]
Introduction

Random-effects meta-analysis

- **normal-normal hierarchical model (NNHM):**

\[
y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),
\]
\[
\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \ldots, k)\]

Data:
- estimates \(y_i \)
- standard errors \(\sigma_i \)

Parameters:
- study-specific effects \(\theta_i \)
- overall effect \(\mu \)
- heterogeneity \(\tau \)

(Bayesian approach: prior specification for \(\mu \) and \(\tau \))

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.65</td>
<td>[0.29, 1.53]</td>
</tr>
</tbody>
</table>
Introduction
Random-effects meta-analysis

- normal-normal hierarchical model (NNHM):

\[y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2), \]
\[\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \ldots, k) \]

Data:
- estimates \(y_i \)
- standard errors \(\sigma_i \)

Parameters:
- study-specific effects \(\theta_i \)
- overall effect \(\mu \)
- heterogeneity \(\tau \)

(Bayesian approach: prior specification for \(\mu \) and \(\tau \))

Complementing evidence from an RCT...
normal-normal hierarchical model (NNHM):

\[y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2), \]
\[\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \ldots, k) \]

Data:
- estimates \(y_i \)
- standard errors \(\sigma_i \)

Parameters:
- study-specific effects \(\theta_i \)
- overall effect \(\mu \)
- heterogeneity \(\tau \)

(Bayesian approach: prior specification for \(\mu \) and \(\tau \))

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.65</td>
<td>[0.29, 1.53]</td>
</tr>
</tbody>
</table>
normal-normal hierarchical model (NNHM):

\[y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2), \]
\[\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad (\text{for } i = 1, \ldots, k) \]

Data:
- estimates \(y_i \)
- standard errors \(\sigma_i \)

Parameters:
- study-specific effects \(\theta_i \)
- overall effect \(\mu \)
- heterogeneity \(\tau \)

(Bayesian approach: prior specification for \(\mu \) and \(\tau \))
Introduction
Shrinkage estimation

commonly:
- main interest in overall effect μ

shrinkage estimation:
- (updated) estimate of study’s specific effect θ_i
- based on all estimates $(y_1, \ldots, y_k, \sigma_1, \ldots, \sigma_k)$
- more or less “shrunk” towards the overall mean μ, (depending on heterogeneity)
- a.k.a. best linear unbiased prediction (BLUP) \(^2\)

Introduction
Shrinkage estimation

commonly:
- main interest in overall effect μ

shrinkage estimation:
- (updated) estimate of study’s specific effect θ_i
- based on all estimates $(y_1, \ldots, y_k, \sigma_1, \ldots, \sigma_k)$
- more or less “shrunk” towards the overall mean μ, (depending on heterogeneity)
- a.k.a. best linear unbiased prediction (BLUP)2

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.65</td>
<td>[0.29, 1.53]</td>
</tr>
</tbody>
</table>

Why shrinkage?

- often of primary interest: a particular study (-outcome)
- here:
 - randomized study
 - additional data
- aim: to infer the randomized study’s outcome
 (a shrinkage estimate, not an overall mean\(^3\))
- NNHM (meta-analysis) model provides framework
- useful when data are sparse (e.g., rare diseases)

Shrinkage estimation
The MAP / MAC connection

- Two ways to analyze ith estimate:
 - **Meta-analytic-combined (MAC)** approach: perform joint meta-analysis of all studies, determine ith shrinkage estimate
 - **Meta-analytic-predictive (MAP)** approach: meta-analyze all but ith study; resulting posterior yields *meta-analytic predictive (MAP)* prior, use MAP prior and data y_i to infer θ_i

- Both approaches yield identical results

MAP approach
 - Additional motivation
 - Quantification of information contributed by additional studies

consider: primary interest in randomized trial outcome (no “breaking of randomization” by pooled analysis)

does it make sense to consider shrinkage estimates from a 2-study meta-analysis?

how do shrinkage estimates behave in general?
Shrinkage estimation

Two-study scenario

- consider: primary interest in randomized trial outcome (no “breaking of randomization” by pooled analysis)
- does it make sense to consider shrinkage estimates from a 2-study meta-analysis?
- how do shrinkage estimates behave in general?

- investigate example cases

- consider pair of studies, binary endpoint (log-OR);
 $n_1 = 25, n_2 = 400 \rightarrow$ approx. $\sigma_1 = 0.8, \sigma_2 = 0.2$
- effect prior: $p(\mu) = \text{uniform}$
- heterogeneity prior: $p(\tau) = \text{half-Normal}(0.5)$
\[\sigma_1 = 0.8, \quad \sigma_2 = 0.2, \text{ interested in } \theta_1 \]
Shrinkage estimation

Two-study scenario

\[y_2 - y_1 \]

\[\text{shrinkage interval} \]

\[y_1 - 1.96 \sigma_1 \]
\[y_1 + 1.96 \sigma_1 \]

\(\sigma_1 = 0.8, \quad \sigma_2 = 0.2, \) interested in \(\theta_1 \)
Shrinkage estimation
Two-study scenario

\[y_2 - y_1 \]

shrinkage interval

\[y_1 - 1.96 \sigma_1, y_1 + 1.96 \sigma_1 \]

\[y_1, y_1 + 1.96 \sigma_1 \]

\[y_1 - 1.96 \sigma_1 \]

\[y_2 \]

\[\sigma_1 = 0.8, \sigma_2 = 0.2, \text{interested in } \theta_1 \]
Shrinkage estimation

Two-study scenario

\[y_2 - y_1 \]

\[y_1 - 1.96 \sigma_1 \]

\[y_1 + 1.96 \sigma_1 \]

\[\sigma_1 = 0.8, \quad \sigma_2 = 0.2, \text{ interested in } \theta_1 \]
Shrinkage estimation
Two-study scenario

\[y_2 - y_1 \]

shrinkage interval

\[y_1 \pm 1.96 \sigma_1 \]

\[y_1 - 1.96 \sigma_1 \]

\[y_1 + 1.96 \sigma_1 \]

\[\sigma_1 = 0.8, \quad \sigma_2 = 0.2, \text{ interested in } \theta_1 \]
Shrinkage estimation

Two-study scenario

\[y_2 - y_1 \]

shrinkage interval

'yplain' CI

\[y_1 - 1.96\sigma_1 \]

\[y_1 \]

\[y_1 + 1.96\sigma_1 \]

\[\sigma_1 = 0.8, \sigma_2 = 0.2, \text{interested in } \theta_1 \]
Shrinkage estimation

Two-study scenario

\[y_2 - y_1 \]

Shrinkage interval

'plain' CI

\[y_1 - 1.96 \sigma_1 \]
\[y_1 + 1.96 \sigma_1 \]

\[\sigma_1 = 0.8, \quad \sigma_2 = 0.2, \text{ interested in } \theta_1 \]

robust behaviour
Shrinkage estimation

Two-study scenario

\[y_2 - y_1 \]

- Shrinkage interval
- 58% 65% 84% 104% 103% 101% 101%

'plain' CI

\[y_1 - 1.96 \sigma_1 \]

\[y_1 + 1.96 \sigma_1 \]

\[\sigma_1 = 0.8, \quad \sigma_2 = 0.2, \text{ interested in } \theta_1 \]

robust behaviour

relative shrinkage interval width: may be substantially shorter
Shrinkage estimation

Two-study simulations

- how do shrinkage intervals behave on average?
- what gain can we expect (if any)?

- investigate:
 - coverage
 - interval width

- consider again pairs of studies (binary endpoint);
 \(n_1, n_2 \in \{25, 100, 400\} \),
 \(\sigma_1, \sigma_2 \in \{0.8, 0.4, 0.2\} \)

- prior: uniform prior for \(\mu \), half-Normal(0.5) for heterogeneity \(\tau \)
 (sensitivity analysis with half-Normal(1.0))

- derive estimate for \(\theta_1 \)
Shrinkage estimation

Two-study simulations: **coverage (%)**

<table>
<thead>
<tr>
<th>n_1/n_2</th>
<th>small</th>
<th>moderate</th>
<th>substantial</th>
<th>large</th>
<th>very large</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/400</td>
<td>99.8</td>
<td>99.5</td>
<td>99.0</td>
<td>93.4</td>
<td>84.1</td>
<td>79.4</td>
</tr>
<tr>
<td>25/100</td>
<td>98.7</td>
<td>98.8</td>
<td>98.3</td>
<td>93.6</td>
<td>86.1</td>
<td>79.9</td>
</tr>
<tr>
<td>100/400</td>
<td>98.5</td>
<td>98.1</td>
<td>97.2</td>
<td>93.3</td>
<td>90.7</td>
<td>90.6</td>
</tr>
<tr>
<td>25/25</td>
<td>96.7</td>
<td>96.8</td>
<td>96.1</td>
<td>94.6</td>
<td>90.4</td>
<td>84.5</td>
</tr>
<tr>
<td>100/100</td>
<td>96.8</td>
<td>96.7</td>
<td>96.4</td>
<td>94.0</td>
<td>91.3</td>
<td>91.0</td>
</tr>
<tr>
<td>400/400</td>
<td>96.9</td>
<td>96.7</td>
<td>95.0</td>
<td>93.9</td>
<td>93.9</td>
<td>94.1</td>
</tr>
<tr>
<td>100/25</td>
<td>96.0</td>
<td>95.8</td>
<td>95.1</td>
<td>94.8</td>
<td>93.9</td>
<td>92.6</td>
</tr>
<tr>
<td>400/100</td>
<td>95.2</td>
<td>95.8</td>
<td>95.2</td>
<td>94.8</td>
<td>93.7</td>
<td>93.8</td>
</tr>
<tr>
<td>400/25</td>
<td>95.2</td>
<td>94.9</td>
<td>95.3</td>
<td>94.7</td>
<td>94.8</td>
<td>94.5</td>
</tr>
</tbody>
</table>

*: heterogeneity τ drawn from prior distribution
Shrinkage estimation

Two-study simulations: **coverage (%)**

<table>
<thead>
<tr>
<th>n_1/n_2</th>
<th>small 0.0</th>
<th>moderate 0.1</th>
<th>substantial 0.2</th>
<th>large 0.5</th>
<th>very large 1.0</th>
<th>20.5</th>
<th>21.0</th>
<th>22.0</th>
<th>2very large</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/400</td>
<td>99.8</td>
<td>99.5</td>
<td>99.0</td>
<td>93.4</td>
<td>84.1</td>
<td>79.4</td>
<td>94.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/100</td>
<td>98.7</td>
<td>98.8</td>
<td>98.3</td>
<td>93.6</td>
<td>86.1</td>
<td>79.9</td>
<td>95.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/400</td>
<td>98.5</td>
<td>98.1</td>
<td>97.2</td>
<td>93.3</td>
<td>90.7</td>
<td>90.6</td>
<td>94.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25/25</td>
<td>96.7</td>
<td>96.8</td>
<td>96.1</td>
<td>94.6</td>
<td>90.4</td>
<td>84.5</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/100</td>
<td>96.8</td>
<td>96.7</td>
<td>96.4</td>
<td>94.0</td>
<td>91.3</td>
<td>91.0</td>
<td>95.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400/400</td>
<td>96.9</td>
<td>96.7</td>
<td>95.0</td>
<td>93.9</td>
<td>93.9</td>
<td>94.1</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100/25</td>
<td>96.0</td>
<td>95.8</td>
<td>95.1</td>
<td>94.8</td>
<td>93.9</td>
<td>92.6</td>
<td>94.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400/100</td>
<td>95.2</td>
<td>95.8</td>
<td>95.2</td>
<td>94.8</td>
<td>93.7</td>
<td>93.8</td>
<td>95.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400/25</td>
<td>95.2</td>
<td>94.9</td>
<td>95.3</td>
<td>94.7</td>
<td>94.8</td>
<td>94.5</td>
<td>95.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: heterogeneity τ drawn from prior distribution

good coverage for non-extreme heterogeneity
Shrinkage estimation

Two-study simulations: relative interval width (%)

<table>
<thead>
<tr>
<th>n_1/n_2</th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/400</td>
<td>62.3</td>
<td>62.7</td>
<td>63.0</td>
<td>65.6</td>
<td>72.1</td>
<td>83.1</td>
<td>65.1</td>
</tr>
<tr>
<td>25/100</td>
<td>67.5</td>
<td>67.4</td>
<td>67.9</td>
<td>69.8</td>
<td>75.2</td>
<td>84.2</td>
<td>69.5</td>
</tr>
<tr>
<td>100/400</td>
<td>78.5</td>
<td>78.7</td>
<td>79.9</td>
<td>85.2</td>
<td>91.4</td>
<td>95.9</td>
<td>83.4</td>
</tr>
<tr>
<td>25/25</td>
<td>78.9</td>
<td>79.0</td>
<td>79.0</td>
<td>79.7</td>
<td>81.8</td>
<td>86.8</td>
<td>79.7</td>
</tr>
<tr>
<td>100/100</td>
<td>85.1</td>
<td>85.4</td>
<td>85.7</td>
<td>88.5</td>
<td>92.5</td>
<td>96.2</td>
<td>87.5</td>
</tr>
<tr>
<td>400/400</td>
<td>89.9</td>
<td>90.5</td>
<td>91.9</td>
<td>95.5</td>
<td>97.8</td>
<td>99.0</td>
<td>93.7</td>
</tr>
<tr>
<td>100/25</td>
<td>92.9</td>
<td>92.9</td>
<td>93.0</td>
<td>93.4</td>
<td>94.6</td>
<td>96.6</td>
<td>93.3</td>
</tr>
<tr>
<td>400/100</td>
<td>95.0</td>
<td>95.1</td>
<td>95.4</td>
<td>96.7</td>
<td>98.1</td>
<td>99.1</td>
<td>96.2</td>
</tr>
<tr>
<td>400/25</td>
<td>98.0</td>
<td>98.0</td>
<td>98.1</td>
<td>98.2</td>
<td>98.6</td>
<td>99.2</td>
<td>98.2</td>
</tr>
</tbody>
</table>

*: heterogeneity τ drawn from prior distribution
Shrinkage estimation

Two-study simulations: relative interval width (%)

<table>
<thead>
<tr>
<th>n_1/n_2</th>
<th>small</th>
<th>moderate</th>
<th>substantial</th>
<th>large</th>
<th>very large</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/400</td>
<td>62.3</td>
<td>62.7</td>
<td>63.0</td>
<td>65.6</td>
<td>72.1</td>
<td>83.1</td>
</tr>
<tr>
<td>25/100</td>
<td>67.5</td>
<td>67.4</td>
<td>67.9</td>
<td>69.8</td>
<td>75.2</td>
<td>84.2</td>
</tr>
<tr>
<td>100/400</td>
<td>78.5</td>
<td>78.7</td>
<td>79.9</td>
<td>85.2</td>
<td>91.4</td>
<td>95.9</td>
</tr>
<tr>
<td>25/25</td>
<td>78.9</td>
<td>79.0</td>
<td>79.0</td>
<td>79.7</td>
<td>81.8</td>
<td>86.8</td>
</tr>
<tr>
<td>100/100</td>
<td>85.1</td>
<td>85.4</td>
<td>85.7</td>
<td>88.5</td>
<td>92.5</td>
<td>96.2</td>
</tr>
<tr>
<td>400/400</td>
<td>89.9</td>
<td>90.5</td>
<td>91.9</td>
<td>95.5</td>
<td>97.8</td>
<td>99.0</td>
</tr>
<tr>
<td>100/25</td>
<td>92.9</td>
<td>92.9</td>
<td>93.0</td>
<td>93.4</td>
<td>94.6</td>
<td>96.6</td>
</tr>
<tr>
<td>400/100</td>
<td>95.0</td>
<td>95.1</td>
<td>95.4</td>
<td>96.7</td>
<td>98.1</td>
<td>99.1</td>
</tr>
<tr>
<td>400/25</td>
<td>98.0</td>
<td>98.0</td>
<td>98.1</td>
<td>98.2</td>
<td>98.6</td>
<td>99.2</td>
</tr>
</tbody>
</table>

*: heterogeneity τ drawn from prior distribution

- substantial precision gain possible
Shrinkage estimation
The Creutzfeld-Jakob disease (CJD) example

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.65</td>
<td>[0.29, 1.53]</td>
</tr>
</tbody>
</table>

- shrinkage interval width: 66%
- 129% sample size gain (12 → ≈27 patients)
- results not dominated by external data (only ≈15 of 88 pts. contributed)
Shrinkage estimation
The Creutzfeld-Jakob disease (CJD) example

- quoted estimate • shrinkage estimate

<table>
<thead>
<tr>
<th>study</th>
<th>hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>0.61</td>
<td>[0.37, 0.99]</td>
</tr>
<tr>
<td>randomized</td>
<td>0.84</td>
<td>[0.24, 2.90]</td>
</tr>
<tr>
<td>mean</td>
<td>0.65</td>
<td>[0.29, 1.53]</td>
</tr>
</tbody>
</table>

- shrinkage interval width: 66%
- 129% sample size gain (12 → ≈27 patients)
- results not dominated by external data (only ≈15 of 88 pts. contributed)

```r
> require("bayesmeta")
> # perform analysis:
> bm <- bayesmeta(y = cjd$logHR, sigma = cjd$logHR.se,
+                  labels = cjd$study,
+                  tau.prior = function(t){dhalfnormal(t, scale=0.5)})
> # show shrinkage estimates:
> print(exp(bm$theta[c(7,4,8),"randomized"]))
95% lower    median 95% upper
0.3142006 0.6767489 1.6112718
```
Conclusions
Shrinkage estimation for 2 studies

- readily motivated, transparent
- valid (coverage close to nominal level)
- robust behaviour
- potentially substantial gain despite ‘pathological’ setting ($k = 2$)
- especially if external data come with great precision ($\sigma_2 \leq \sigma_1$)
- special “$k = 2$”-case: alternative parametrisation possible (reference to “overall mean” μ not necessary)
- article under review\(^5\)
- computations quick & easy using \texttt{bayesmeta} R package\(^6\)

\(^6\)http://cran.r-project.org/package=bayesmeta
+++ additional slides +++
CJD example

R code

cjd <- cbind.data.frame("study" = c("observational", "randomized"),
 "logHR" = c(-0.49948, -0.17344),
 "logHR.se" = c(0.2493, 0.6312))

analyze:
require("bayesmeta")
bm <- bayesmeta(y = cjd$logHR,
 sigma = cjd$logHR.se,
 labels = cjd$study,
 tau.prior = function(t){dhalfnormal(t, scale=0.5)})

show results:
print(bm)

show forest plot:
forestplot(bm, xlab="log-HR")

show shrinkage estimates:
print(bm$theta)
print(exp(bm$theta[c(7,4,8), "randomized"]))
the normal-normal hierarchical model (NNHM):

\[y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2), \]
\[\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad (\text{for } i = 1, \ldots, k) \]

the alternative reference model:

\[y_i | \vartheta_i \sim \text{Normal}(\vartheta_i, \sigma_i^2), \]
\[\vartheta_1 | \alpha, \beta \sim \text{Normal}(\alpha, 0) \quad (\text{i.e., } \vartheta_1 = \alpha), \]
\[\vartheta_2 | \alpha, \beta \sim \text{Normal}(\alpha, \beta^2) \]

both models yield identical shrinkage estimates\(^7\) for \(k = 2\) and

- (improper) uniform priors for \(\mu\) and \(\alpha\)
- (any) heterogeneity prior with density \(p(\tau) = f_*(\tau)\),
 and matching prior with density \(p(\beta) = \frac{1}{\sqrt{2}} f_*(\frac{\beta}{\sqrt{2}})\) for \(\beta\)

Heterogeneity (τ)

Half-Normal prior: motivation (1)

- **recommended family**: half-t, half-Normal, half-Cauchy
 (*not* recommended: inverse-Gamma)

- effect measure here: logarithmic **ratio** (odds ratio, hazard ratio,...)

- heterogeneity τ may be translated into implied **spread of effects** θ_i and $\exp(\theta_i)$

- Spiegelhalter et al. (2004)\(^9\) proposed **categories**
 - “reasonable”: $0.1 < \tau < 0.5$
 - “fairly high”: $0.5 < \tau < 1.0$
 - “fairly extreme”: $\tau > 1.0$

- Turner & al. (2015)\(^{10}\) empirically investigated heterogeneity in meta-analyses archived in the Cochrane Library

Heterogeneity (τ)
Half-Normal prior: motivation (2)

- **proposed categories:**
 - “reasonable”: $0.1 < \tau < 0.5$
 - “fairly high”: $0.5 < \tau < 1.0$
 - “fairly extreme”: $\tau > 1.0$

- **Implications** of certain τ values:
 95% range of effects $\exp(\theta_i)$
 spans a range of $\exp(3.92\tau)$
 (ratio largest / smallest)

<table>
<thead>
<tr>
<th>τ</th>
<th>$\exp(3.92\tau)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>0.1</td>
<td>1.48</td>
</tr>
<tr>
<td>0.2</td>
<td>2.19</td>
</tr>
<tr>
<td>0.5</td>
<td>7.10</td>
</tr>
<tr>
<td>1.0</td>
<td>50.4</td>
</tr>
<tr>
<td>2.0</td>
<td>2540</td>
</tr>
</tbody>
</table>
Heterogeneity (τ)

Half-Normal prior: motivation (3)

- Small: "reasonable"
- Fairly high: "fairly high"
- Fairly extreme: "fairly extreme"

Turner et al. (2015)

- Half-Normal(0.5)
- Half-Normal(1.0)
Standard errors and sample sizes

Heuristics

- assume: standard errors scale with $\frac{1}{\sqrt{N}}$
- doubling the sample size ($N = 2 \times N_0$) means a shorter s.e., shorter by a factor of $\frac{1}{\sqrt{2}} = 71\%$

<table>
<thead>
<tr>
<th>N</th>
<th>$\frac{1}{\sqrt{N/N_0}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_0</td>
<td>100 %</td>
</tr>
<tr>
<td>$2N_0$</td>
<td>71 %</td>
</tr>
<tr>
<td>$3N_0$</td>
<td>58 %</td>
</tr>
<tr>
<td>$4N_0$</td>
<td>50 %</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Heuristics

- assume: standard errors scale with $\frac{1}{\sqrt{N}}$
- doubling the sample size ($N = 2 \times N_0$) means a shorter s.e.,
 shorter by a factor of $\frac{1}{\sqrt{2}} = 71\%$

<table>
<thead>
<tr>
<th>N</th>
<th>$\frac{1}{\sqrt{N/N_0}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_0</td>
<td>100 %</td>
</tr>
<tr>
<td>$2N_0$</td>
<td>71 %</td>
</tr>
<tr>
<td>$3N_0$</td>
<td>58 %</td>
</tr>
<tr>
<td>$4N_0$</td>
<td>50 %</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>σ/σ_0</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>0 %</td>
</tr>
<tr>
<td>90 %</td>
<td>23 %</td>
</tr>
<tr>
<td>80 %</td>
<td>56 %</td>
</tr>
<tr>
<td>70 %</td>
<td>104 %</td>
</tr>
<tr>
<td>50 %</td>
<td>300 %</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- inversely: a SE only $\frac{\sigma}{\sigma_0} = 71\%$ as wide
 implies a 100% gain in sample size
- generally:
 effective sample size gain $(\frac{\sigma}{\sigma_0})^{-2} - 1$
Shrinkage estimation

Two-study simulations: **relative sample size gain (%)**

| n_1/n_2 | τ | 0.0 | 0.1 | 0.2 | 0.5 | 1.0 | 2.0 | *
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25/400</td>
<td></td>
<td>162</td>
<td>160</td>
<td>158</td>
<td>144</td>
<td>113</td>
<td>68.4</td>
<td>147</td>
</tr>
<tr>
<td>25/100</td>
<td></td>
<td>123</td>
<td>123</td>
<td>121</td>
<td>111</td>
<td>89.6</td>
<td>56.3</td>
<td>113</td>
</tr>
<tr>
<td>100/400</td>
<td></td>
<td>64.5</td>
<td>64.0</td>
<td>60.0</td>
<td>43.8</td>
<td>25.7</td>
<td>12.7</td>
<td>49.4</td>
</tr>
<tr>
<td>25/25</td>
<td></td>
<td>61.2</td>
<td>60.9</td>
<td>60.7</td>
<td>58.4</td>
<td>51.8</td>
<td>36.9</td>
<td>58.7</td>
</tr>
<tr>
<td>100/100</td>
<td></td>
<td>38.8</td>
<td>38.1</td>
<td>37.1</td>
<td>29.6</td>
<td>19.4</td>
<td>10.1</td>
<td>32.3</td>
</tr>
<tr>
<td>400/400</td>
<td></td>
<td>24.2</td>
<td>22.9</td>
<td>19.4</td>
<td>11.0</td>
<td>5.5</td>
<td>2.4</td>
<td>15.1</td>
</tr>
<tr>
<td>100/25</td>
<td></td>
<td>15.9</td>
<td>16.0</td>
<td>15.8</td>
<td>14.8</td>
<td>11.9</td>
<td>7.5</td>
<td>14.9</td>
</tr>
<tr>
<td>400/100</td>
<td></td>
<td>11.0</td>
<td>10.7</td>
<td>10.0</td>
<td>7.3</td>
<td>4.2</td>
<td>2.0</td>
<td>8.3</td>
</tr>
<tr>
<td>400/25</td>
<td></td>
<td>4.1</td>
<td>4.1</td>
<td>4.0</td>
<td>3.7</td>
<td>2.9</td>
<td>1.7</td>
<td>3.7</td>
</tr>
</tbody>
</table>

*: heterogeneity τ drawn from prior distribution