European regulators’ view on platform trials

Lessons recently learned

Disclaimer

The following slides represent our personal views and do not necessarily reflect the views of the Paul-Ehrlich-Institut, EMA or any other European agency.
Overview on general designs in master protocols

- **Basket trial**
 (same target, same treatment different indications)

- **Umbrella trial**
 (different targets, different trmts, same indication)

- **Platform trial**
 (adaptive version of any of the above trials)

- Often trials do not fit exactly in any of the above schemes.
- Use design and analysis considerations to judge trial rather than names.
Current position on master protocols
from a statistical and regulatory perspective

Acceptability might depend on design issues, such as

- Phase of study (exploratory vs confirmatory)
- Rationale for master protocol (combined study vs a series of studies)
- Study design (dependent vs independent sub-studies)
- Planned analyses (pooled analysis vs separate analyses)
- Rationale for analyses (common indication vs separate indications)
- Adaptive design (adaptive vs fixed design; pre-specified vs ad-hoc; type of adaptions)
Important considerations

- Master protocols **cannot** be used to **lower regulatory standards**
 - Strength of pivotal evidence needs to be the same as with “regular” trials in the same indication

- Master protocols **cannot** be used to **reduce contact with regulators**
 - Initiation of new sub-trials must be submitted to NCAs\(^1\), either as new protocol linked to the master protocol or as substantial amendment
 - Seamless designs cannot be approved as a whole; Sponsors must provide a substantial amendment after first phase to update B/R

1) National agencies (NCAs) are directly responsible for the authorisation of clinical trials; Approval of marketing authorization applications usually centralised via EMA
Type 1 error control
in basket / umbrella trials

- Depends on study phase
 - Exploratory vs confirmatory
 - Yet, always sensible in order to minimize false positive results
 (and risk in further development)

- Possibly no impact on T1E if sub-studies are independent
 - Using separate T1E per sub-study might be acceptable
 - Separate hypotheses?
 - Clear separation of target populations?
 - *Rationale and regulatory acceptance* to evaluate B/R separately for each sub-study?

- Possible approaches for dependent sub-studies
 - Confirmatory analysis in pooled data followed by exploratory analyses in sub-studies
 (to assess consistency)
 > Subgroup GL (EMA/CHMP/539146/2013)
 - Common T1E control also for sub-trials, e.g. in an hierarchical fashion
 > Multiplicity GL (EMA/CHMP/44762/2017)

- What about platform trials / adaptive designs?
Type 1 error control
in platform trials / adaptive designs

- Platform trials are usually **more challenging** than fixed design basket / umbrella trial

- T1E might **not** be affected if sub-studies are independent and new treatment introduced via a **new sub-study**
 - T1E control per sub-study
 - New sub-study same as new external study

- T1E if sub-studies are modified?
 - Adaption needs to be pre-planned and
 - Measures to control T1E must be pre-specified!

- T1E if sub-studies are dependent?
 - Common hypothesis
 - Common control arm
 - Adaptions and measures to control T1E must be **pre-specified!**
Bias in platform trials / adaptive designs

- Bias might occur (in both cases, independent and dependent sub-studies)
 - Selection bias (overestimating therapy effect due to selection of sub-studies)
 - Operational bias (change of patient population and conduct of study)
 - How to avoid, minimize or correct for this?
 - Measures must be **pre-specified**!

- For dependent sub-studies see also GL on adaptive trials (CHMP/EWP/2459/02)
Pooling and transfer of evidence
(especially in basket trials)

- Clinical rationale for pooling
 - is strongly required, at least if primary endpoint is based on pooled population

- Grounds for pooling might be challenged
 - Same prognosis?
 - Same effect size / homogenous effect in all sub-studies?
 - Same SOC / treatment possible in control arm?
 - Same effect with control?

- In general, pooling can be envisaged as supportive / exploratory analysis but might be difficult to justify as primary analysis.

- Same considerations apply for transfer of evidence (‘borrowing’

Overlapping target populations
(especially in umbrella trials)

- Regulatory decisions are complicated if target populations overlap

- E.g. in umbrella trials when patients express multiple biomarkers, allocation to sub-studies not uniquely defined

- If biomarker distribution in sub-study does not reflect population prevalence, bias might occur (see issues with pooling), e.g., due to:
 - different prognoses or
 - different treatment effects
Shared control arm
(especially in umbrella trials)

- How can we define a relevant control group?

- Preferably use separate control arms per sub-study
- If using a shared control,
 - use *concurrent* controls.
 - use controls which *would have been eligible for the treatment arm*.
- Pooling controls should be reflected carefully!
Shared control arm
(especially in umbrella trials)

- How can we deal with multiplicity?
 - Separate T1E control not (negatively) affected by shared control arm
 - Common T1E control
 - (Positive) correlation reduces the overall FWER ($= P(V \geq 1)$)\(^1\)
 - Bonferroni-type adjustments controls the PFER ($= E(V)$) and FWER
 - Sequential methods (hierarchical testing, graphical methods, …) inflate PFER but control FWER
 - More information, e.g., in Howard et al. 2018\(^2\)

1) V: Number of false positives
Shared control arm
(especially in umbrella trials)
Further challenges
not related to statistics… but very relevant to regulators!

- Complexity of study (negatively) impacts, e.g.,
 - patient information and informed consent
 - logistics
 - legal aspects

- Conduct of study
 - DMC are important (irrespective of study phase)
 - Changes in ongoing study need to be approved by NCAs
 - Initiation of next phase (e.g. in seamless designs) needs to be approved by NCAs (via substantial amendment)
 - Whole study will be stopped if issues in one arm arise

- Risk of never ending studies
 - End of study must be pre-specified within the protocol
General recommendations

- Provide sound scientific (and operational) rationale for master protocol
- Identify possible issues
- Pre-specify solutions within protocol

✓ Pre-specify and discuss T1E control
 - Given study goals and study phase

✓ Pre-specify and discuss measures to prevent bias
 - Operational and statistical methods to reduce or prevent bias
 - Bias might be less of an issue if signal is large and consistent over multiple endpoints and sub-studies (matter of assessment)

✓ Pre-specify possible adaptions of the study design
 - Describe decision criteria and following changes
 - Describe impact on study integrity and validity
 - Pre-specify a plan to check impact of changes
Take-home messages

- Of note, this is an *ongoing discussion*.

- Sound planning and scientific rationale required

- Master protocols are generally (more) acceptable for *exploratory studies*
 - Possibly acceptable as pivotal study if T1E is adequately controlled

- Pre-specification of possible adaptions helps to maintain study integrity, validity and T1E control
 - Data driven ad-hoc changes are considered problematic

- Consider existing guidelines
 - Adaptive clinical trials (CHMP/EWP/2459/02)
 - Sub groups (EMA/CHMP/539146/2013)
 - Multiplicity (EMA/CHMP/44762/2017)
 - (Specific guidelines and position papers are in preparation)

- Especially for *confirmatory trials* scientific advice is highly recommended.
Acknowledgments
(in alphabetic order)

- EMA Biostatistics Working Party “Task force on master protocols”
 - Anja Schiel (NOMA, NO)
 - Bettina Haidich (University of Thessaloniki, Greece)
 - Christian Gartner (AGES, AT)
 - David Brown (MHRA, UK)
 - Martin Posch (MedUni Vienna, AT)
 - Olivier Collignon (EMA, UK)

- Paul-Ehrlich-Institut
 - Brigitte Keller-Stanislawski (Head of Pharmacovigilance)
 - Peter Volkers (Head of Biostatistics)

- BfArM
 - Norbert Benda (Head of Biostatistics)