Comparing treatments evaluated in studies forming disconnected networks of evidence: A review of methods

John W Stevens
Reader in Decision Science
University of Sheffield

EFPSI
European Statistical Meeting on Evidence Synthesis 2016
Acknowledgements

• Amgen:
 › For initiating the methodological review

• Chrissie Fletcher and Gerry Downey:
 › For supporting publication of the methodological review and as co-authors

• Anthea Sutton:
 › For conducting the systematic literature review of methods and as a co-author of the publication
Outline

- Background
- The Problem
- Systematic Review of Methods
- Taxonomy of Methods
- Discussion and Recommendations
Background (1)

- NICE is responsible for making recommendations on the use of new treatments by the NHS in England
- Amgen was invited to submit evidence to support the use of T-VEC in metastatic melanoma
 - Comparators of interest were dacarbazine (DTIC), ipilimumab, vemurafenib and dabrafenib
- Amgen conducted a systematic literature review of published RCTs (and non-RCTs)
Background (2)

10mg/kg IPI + DTIC

3mg/kg IPI + Gp100

3mg/kg IPI + NIV

3mg/kg NIV + 1mg/kg NIV

10 mg/kg Pem

10 mg/kg Pem

Vem + Cobi

Vem

Dab + Tram

Dab

GM-CSF

T-VEC

3mg/kg IPI

4

Gp100

3mg/kg IPI

4

3

Dab

DTIC

3

1

Vem

6

8

2

7

9

GM-CSF

10

T-VEC

Centre for Bayesian Statistics in Health Economics
The Problem

- Perform a naïve or unadjusted indirect treatment comparison
 - Ignores differences in patient characteristics between studies and assumes that the data on each treatment arose from a single study
- Perform a conventional contrast-based network meta-analysis such that $d_{XY} = d_{ZY} - d_{ZX}$
 - Not possible to compare treatments across networks without making additional assumptions
Systematic Review of Methods

- A two-stranded approach
 - Keyword searching
 » Including terms “no head-to-head”, “absence of head-to-head”, “disconnected network”, “meta-analysis”
 » Identified 23 articles
 » No new relevant articles were found
 - Pearl growing
 » Based on 11 published articles, including articles on model-based meta-analysis (which will not be discussed further)
 » Identified 343 articles; 258 relating to one article
 » 28 unique, relevant articles were found
Taxonomy of Methods

<table>
<thead>
<tr>
<th>Simultaneous comparison between treatments in a heterogeneous population</th>
<th>Use of external controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shared parameter model</td>
</tr>
<tr>
<td></td>
<td>Random baseline model</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pair-wise comparisons in an homogeneous population</th>
<th>Adjusted treatment response</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Add hoc methods</th>
<th>Multivariate meta-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class effects</td>
</tr>
</tbody>
</table>
SIMULTANEOUS COMPARISON BETWEEN TREATMENTS IN A HETEROGENEOUS POPULATION
Use of External Controls (1)

- Formulate a prior distribution for a parameter (e.g. the log odds for a binary outcome) for the reference treatment in study i in at least one study in each group of disconnected studies.

- Data from 2100 patients in 42 RCT and single-arm Phase 2 studies
- External survivor function of an untreated group generated as:

\[\bar{S}(t) = \frac{1}{n} \sum_{i=1}^{n} S_i(t) \] where \(S_i(t) = [S_0(t)]^{HR} \)
Use of External Controls (3)

- Limitations associated with the use of the Korn et al (2008) estimates:
 - Parameter estimates are sample statistics
 - Estimates of variances and covariances are not provided
 - It is unlikely that patient-level data will be available for comparator treatments
 - In non-linear models the expectation of a function is not the same as the function evaluated as its expectation i.e. $E_x[f(X)] \neq f(E[X])$.

- More about the Korn et al (2008) model later
Use of External Controls (4)

- In the absence of any empirical evidence, use elicitation of experts’ beliefs to formulate the required prior distributions.
Shared Parameter Model

- Abrams et al (2016) used observational data
- Alternatively, generate a prior distribution for the population effect of two treatments in different networks

\[x_{iXB} \sim N(\bar{\delta}_{iXB}, S) \]
\[d_{XB} \sim N(a, b) \]
Random Baseline Models

- Conventional meta-analyses combine relative treatment effects across studies
 - Baselines are treated as fixed within studies and unrelated across studies
- Random baseline models assume that the baseline are related across studies
 - A criticism of them is that they assume that patients are randomised across studies as well as within studies
- Thom et al (2015) used a random baseline model to connect disconnected networks
PAIRWISE COMPARISONS IN AN HOMOGENEOUS POPULATION
Adjusted Treatment Response

- Adjusted treatment response methods:
 - Generate adjusted responses for at least one treatment arm
 - Indirect estimates are derived as if the treatments had been included in the same study

- Inferences will generally differ from a random effects NMA depending on the patient population characterised by one of the studies

- We are aware of five methods that have been proposed
External Evidence-Based Adjustment

- Adjustments based on prediction models
 - Korn et al (2008) and modified Korn model
 - The adjustment factor, HR_{Adj}, for a comparator treatment is the hazard ratio for the new treatment, HR_N, divided by the hazard ratio for the comparator treatment, HR_C, i.e. $HR_{Adj} = \frac{HR_N}{HR_C}$.
 - Adjusted survivor functions for the comparator treatment can then be generated as:
 \[S_{Adj}(t) = S_C(t)^{HR_{Adj}}. \]
 - Assumes no unmeasured confounds and coefficients are independent and estimated without uncertainty
Propensity Score
Matching Methods (1)

- Propensity score: the probability of treatment assignment conditional on observed covariates.
- Four ways in which a propensity score can be applied:
 - matching, with the most common approach being pair-matching
 - inverse probability of treatment weighting (IPTW)
 - Stratification
 - covariate adjustment
Propensity Score Matching Methods (2)

- Limitations
 - Estimates of treatment effect may be biased when there are unmeasured confounders.
 - Model misspecification can also arise when ignoring interaction effects.
 - Extreme weights can arise as the effect of covariates on treatment selection increases.
 - Implementation requires access to patient-level data on the new and comparator treatments.
Matching-Adjusted Indirect Comparisons (MAIC)

- **MAIC**
 - Uses IPD from a reference treatment in one study
 - Weights the data so that the average baseline characteristics matches those of a treatment in a different study
 - Approach similar to propensity score weighting
 - Limitations
 - Similar to propensity score matching
 - Inferences apply to the population defined by the comparator treatment
 - The target patient population can vary with each comparator
Simulated Treatment Comparisons (STCs)

- STCs are similar to MAICs
 - Use IPD from a reference treatment in one study
 - Uses a prediction model as a function of baseline characteristics
 » Adjusted responses based on the average baseline characteristics in the comparator study
 - Limitations
 » Ignores unobserved confounders
 » Introduces bias in non-linear models
 » Inferences apply to the population defined by the comparator treatment
 - The target patient population can vary with each comparator
AD HOC METHODS
Multivariate Meta-Analysis

- Studies may form a connect network but individual outcomes may form disconnected networks
 - It might be possible to borrow strength across outcome measures using a multivariate NMA (MNMA)
 - A developing area of research that typically synthesises sample estimates of treatment effect using a multivariate normal likelihood function
 - We are not aware of any published work on MNMA of time-to-event outcomes in more flexible models that do not assume proportional hazards
Class Effects

- Treatments could be classified according to their drug class
 - Assumes there is no treatment effect within drug class variability
 - Might be useful when treatments are clinically equivalent
 - Pairwise studies comparing treatments in the same class are excluded

- This approach was used by Dequen et al., 2012
• Network meta-analysis (of RCTs)
 › Allows a synthesis of direct and indirect evidence
 › A simultaneous comparison of all treatments

• Disconnected networks
 › Indirect comparisons, even after adjustment, have been criticised as being a type of naïve indirect comparison
 » “its results are not worthy of consideration” Hoaglin, 2013
 › Statistical modelling is an important part of the armamentarium used to make inferences
 › Decision-makers must make a decision
 › Require alternative methods of analysis
Discussion and Recommendations (2)

• Methods can be classified according to whether:
 › they allow simultaneous comparisons between treatments in a heterogeneous population
 › pair-wise comparisons will be made between treatments in an homogeneous population
 › they are based ad hoc methods

• External controls and shared parameter models
 › Preserve the ability to make simultaneous comparisons between treatments
 › Prior distributions can be based on empirical evidence or expert opinion
Discussion and Recommendations (3)

- Adjusted treatment responses
 - MAIC and STCs may be useful in some contexts but may not be appropriate when the patient population in the comparator treatment’s study is different to the target population
 - Proposals typically only account for sampling variation, not parameter or structural uncertainty
 - Generating posterior distributions should be seen as an important aim in health technology assessment to represent uncertainty about inputs to decision analytic models
Discussion and Recommendations (4)

- All methods have limitations (some more than others) and there is a need for further research:
 - to evaluate the robustness of results and assess the properties of frequentist methods
 - to generate examples using a Bayesian approach to reflect parameter uncertainty not just sampling variation

- Having made a decision, companies should be required to generate empirical evidence:
 - Using value of information
 - To update evidence