Statistical challenges in immunotherapy trials

European Organization for Research and Treatment of Cancer’s Perspectives

Michal Kicinski, PhD
Nathan Touati, MS
Cancer Immunotherapy

Major focus area for cancer treatment

- Growing excitement about these agents the past few years

Immunotherapies targeting the immune system

vs

Chemotherapy and **targeted therapies** targeting directly the tumor

- The immune and anti-tumor response to immunotherapies is *dynamic*

Innovative mechanism of action poses challenges for the classical methodology for trial design and analysis

- Challenges are both **clinical** and **statistical**
New challenges – Response assessment (iRECIST)

Response assessment by RECIST criteria is globally accepted

- **Issue with immunotherapy**: other response patterns have been observed, leading to PD diagnosis and therefore discontinuation of experimental treatment

Alternatives:

- 2009: immune-related response criteria (irRC) based on WHO criteria
- 2017: Newly proposed consensus-based guidelines: iRECIST

Source: Seymour 2017, “iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics”, Lancet Oncol
New challenges – Response assessment (iRECIST)

Recommendations:
- **Phase 3 trials**: incorporate both RECIST 1.1 and iRECIST
 - **But** RECIST 1.1 should continue to be used to define the primary efficacy outcomes (*when PFS, disease progression, BOR...*)
- **Early-phase trials**: can consider using iRECIST as primary criteria

Next step:
- Validation of the efficacy of iRECIST with the creation and analysis of a warehouse of data from immunotherapeutic trials
New challenges – Safety & Endpoint

Caution: Safety with immunotherapies

Careful monitoring of immune-related adverse events (irAEs) is required during both trial and long-term follow-up

- majority of immune-mediated reactions occur during the initial stages of the treatment

What is the most appropriate endpoint?

Overall survival (OS) remains the gold standard

- Approval of ipilimumab, nivolumab and pembrolizumab in advanced lung cancer and melanoma was based on OS

But OS comparisons can be confounded by:
 - crossover within a trial
 - subsequent treatments
 - competing non-cancer related events

Alternative: immune-related PFS (PFS by irRC) exist but is not yet commonly used
Main statistical issue: Non-PH treatment effects

General assumption in trials: Proportional-Hazards treatment effect
- Sample size based on log-rank test
- HR estimate based on Cox PH model

In immunotherapy, treatment effect may depend on time
- Caused by late immune response, short period of treatment administration...

Various patterns of non-PH effects:
- Early treatment effect
- Delayed treatment effect
- Reverse treatment effect over time
Examples of non-PH patterns (1) – Early effect

Eastern Cooperative Oncology Group E4A03 study
Examples of non-PH patterns (2) – Delayed effect

Ipilimumab in Patients with Metastatic Melanoma:

Sipuleucel-T immunotherapy for castration – resistant prostate cancer:

Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre
Examples of non-PH patterns (2) – Delayed effect

Nivolumab versus Dacarbazine in Previously Untreated Melanoma without BRAF Mutation

A Overall Survival

B Progression-free Survival

Patients Surviving (%)

Patients Who Died

No./total no.

Median Survival

mo (95% CI)

Nivolumab

Dacarbazine

Hazard ratio for death, 0.42 (99.79% CI, 0.25–0.73)
P<0.001

Nivolumab

Dacarbazine

50/210

96/208

Not reached

10.8 (9.3–12.1)

Nivolumab

Dacarbazine

108/210

163/208

Hazard ratio for death or disease progression, 0.43 (95% CI, 0.34–0.56); P<0.001

No. at Risk

Nivolumab

Dacarbazine

210 185 150 105 45 8 0

208 177 123 82 22 3 0

No. at Risk

Nivolumab

Dacarbazine

210 116 82 57 12 1 0

208 74 28 12 0 0 0
Examples of non-PH patterns (3) – Reverse effect over time

Gefitinib or Carboplatin-Paclitaxel in Pulmonary Adenocarcinoma

Checkmate 057 Nivolumab vs Docetaxel in Non-Squamous Non-Small-Cell Lung Cancer

A Overall

Hazard ratio, 0.74 (95% CI, 0.65–0.85)
P < 0.001
Events: gefitinib, 453 (74.4%); carboplatin plus paclitaxel, 497 (81.7%)

<table>
<thead>
<tr>
<th>No. at Risk</th>
<th>gefitinib</th>
<th>609</th>
<th>363</th>
<th>212</th>
<th>76</th>
<th>24</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>carboplatin plus paclitaxel</td>
<td>608</td>
<td>412</td>
<td>118</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Checkmate 057 Nivolumab vs Docetaxel in Non-Squamous Non-Small-Cell Lung Cancer

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab (n = 292)</th>
<th>Docetaxel (n = 290)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS (months)</td>
<td>12.2</td>
<td>9.4</td>
</tr>
<tr>
<td>HR = 0.73 (96% CI: 0.59–0.89); p = 0.00155</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-year OS rate: 50.5%
1-year OS rate: 39.0%
Log-rank test

- The **most powerful non-parametric test** to compare survival functions **under PH**
- Equivalent to the score test for HR from the Cox model: **test-estimation coherency**
If non-PH

- Log-rank test may not be the most powerful non-parametric test
- The interpretation of the corresponding treatment effect (HR) complicated
 - Is not a simple average of the hazard ratios over time
 - HR depends on the censoring distribution, which is study-specific

Standard practice: always optimal?
Wish list

- Proper control of type I error probability
- Substantial power gain compared to the standard practice when hazards non-proportional
- Limited power loss when hazards proportional
- Test-estimation coherency
- Simple and meaningful interpretation
- Possibility to condition on stratification factors
What else if not HR

• Median survival time (or other percentile)
• Survival time at certain time point
• Restricted mean survival time
Median survival time

- Less technical interpretation than HR
- Inference based on the difference
- Ignores what happens after the median has been reached (efficiency loss)
- For PFS, depends on the time timing of the scans
- Why this percentile?

![Survival vs Time Graph]

- Control
- Experimental
Survival time at certain time point

- A comparison based on the KM estimates
- Appealing interpretation
- May suffer from lack of efficiency
 - Ignores what happens after the chosen time point has been reached
 - Not all patients are recruited at the same time so some events are excluded
- The choice of the time point subjective
Restricted mean survival time

\[\mu = E(\min(T, t^*)) = \int_0^{t^*} S(t) dt \]

- Several methods of estimation exist
- Better options than direct integration using KM estimates exist, especially for small sample sizes
Restricted mean survival time

- Comparison usually based on the difference (proportion also possible)
 \[\hat{\Delta} = \hat{\mu}_1 - \hat{\mu}_2 \]
- Statistical inference using:
 \[\frac{\hat{\Delta}}{\sqrt{\text{var}(\hat{\Delta})}} \rightarrow N(0,1), \text{ with } \text{var}(\hat{\mu}_j) \text{ estimated using the delta method} \]
- Incorporation of covariates possible
- For small sample sizes, a permutation test should be used

Simple and meaningful interpretation irrespective of the effect pattern
Other alternatives to the log-rank test

- Other tests based on event rates
- Kaplan-Meier test statistics
- Adaptive tests based on restricted mean survival time
- Combinations of two approaches
Other tests based on event rates

• Classical weighted log-rank tests (for two groups)

\[Z = \sum w_{t_i} (o_{t_i}^1 - e_{t_i}^1) \]

\[\frac{Z^2}{\text{var}(Z)} \sim \chi^2(1) \]

• e.g., Fleming-Harrington class of weight functions:

\[w_{t_i} = [\hat{S}(t-)^q [1 - \hat{S}(t-)]^\gamma, q \geq 0 \text{ and } \gamma \geq 0 \]

• \(q = 0 \text{ and } \gamma = 1 \): a popular test emphasizing late differences
• \(q = \gamma = 0 \) gives the log-rank test

• Assign \(w_1 \) to early event times and \(w_2 \) to late event times (Xu et al. Stat Med 2016)

• Adaptively weighted log-rank test (Yang and Prentice Biometrics 2010)
Kaplan-Meier test statistics

• Test statistics based on a weighted average of the difference between the KM survival estimates at different time points

• Higher weight given to time points with bigger differences and larger number of patients at risk

• Several approaches to estimate the weights have been proposed (Shen and Cai Biometrics 2001; Uno et al. Stat Med 2015)
Combinations of two approaches

- Two log-rank tests (Sit et al. Stat Med 2016):
 - Non-inferiority test for the whole study period:
 \[H_0^{(1)}: \frac{\lambda_1}{\lambda_2} \geq a_1 (> 1) \text{ for } t \geq 0 \]
 - Superiority test for the period from time \(t_0 \):
 \[H_0^{(2)}: \frac{\lambda_1}{\lambda_2} \geq a_2 (\leq 1) \text{ for } t \geq t_0 \]
 - Both null hypothesis need to be rejected to claim superiority

\[H_0: H_0^{(1)} \cup H_0^{(2)} \]
\[H_1: H_1^{(1)} \cap H_1^{(2)} \]
Combinations of two approaches

- A two-stage procedure of Qiu and Sheng (Statist Soc B 2008)
 - Stage I: log-rank test
 - Stage II (only in case stage I does not reject H_0): a test to distinguish cases when the hazard rates are identical and cross each other
 - Test in stage II independent of the log-rank test, so no correction for multiplicity needed
Combinations of two approaches

- Augmented log-rank test (Royston and Parmar BMC Med Res Meth 2016)
 - Calculate log-rank test p-value p_{L-R}
 - Calculate the p-value of the permutation test for RMST p_{RMST}
 - Take the minimum $p_{min} = \min(p_{L-R}, p_{RMST})$
 - Compare p_{min} to the empirical distribution of P_{min} under H_0
Properties of methods to test survival differences

- Many methods (e.g., Yang and Prentice Biometrics 2010; Uno et al. Stat Med 2015) characterized by:
 - Substantial or even impressive power gain when the treatment effective and hazards non-proportional
 - Moderate or small power loss under PH
 - Correct type I error rate for a scenario of equal survival distributions, i.e., $S_1(t) = S_2(t)$ for all t
H_0 matters

- Many proposed approaches (e.g., classical weighted log rank tests; Xu et al. Stat Med 2016; Yang and Prentice Biometrics 2010; Shen and Cai Biometrics 2001; Uno et al. Stat Med 2015; Qiu and Sheng Statist Soc B 2008; ...) test the following hypothesis:

\[
H_0 : S_1(t) = S_2(t) \text{ for all } t \\
H_1 : S_1(t) \neq S_2(t) \text{ for some } t
\]

TRUE H_1 DOES NOT IMPLY BETTER SURVIVAL IN ONE ARM!
Illustrative example

- Long-term survival probability of 0.5 in both arms
- Hazard first lower than higher in the experimental arm
- Mean survival time longer in the control arm
- Survival in the experimental arm better than in the control arm for some time
- The hazard function in the experimental arm lower than in the control arm for some time
Simulation study

1) No effect

2) PH (HR=0.7)

3) Early benefit (HR=0.6 the first 6 months)

4) Late benefit (HR=0.7 from month 7)
Simulation study

5) Early benefit, MSTD=0

6) Early benefit, LRTS=0

7) Late benefit, MSTD=0

8) Late benefit, LRTS=0

MSTD: mean survival time difference LRTS: true likelihood ratio test statistic
Simulation results

Probability of rejecting H_0 for different tests.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Log-rank</th>
<th>RMSTD</th>
<th>Adaptive log-rank (Yang and Prentice 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No effect</td>
<td>0.05</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>PH</td>
<td>0.79</td>
<td>0.76</td>
<td>0.78</td>
</tr>
<tr>
<td>Early benefit</td>
<td>0.25</td>
<td>0.26</td>
<td>0.32</td>
</tr>
<tr>
<td>Late benefit</td>
<td>0.36</td>
<td>0.33</td>
<td>0.42</td>
</tr>
<tr>
<td>Early benefit, MSTD=0</td>
<td>0.05</td>
<td>0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>Early benefit, LRTS=0</td>
<td>0.04</td>
<td>0.05</td>
<td>0.16</td>
</tr>
<tr>
<td>Late benefit, MSTD=0</td>
<td>0.06</td>
<td>0.05</td>
<td>0.24</td>
</tr>
<tr>
<td>Late benefit, LRTS=0</td>
<td>0.05</td>
<td>0.05</td>
<td>0.21</td>
</tr>
</tbody>
</table>

PH: proportional hazards; MSTD: mean survival time difference; LRTS: true likelihood ratio test statistic

No censoring, no prognostic factors, a simple randomization, $n=247$ (corresponding to a power of 0.8 to detect HR=0.7 by the log-rank test), $B=2000$
Simulation results

- The adaptively weighted log-rank test frequently rejects H_0 when there is no overall survival benefit in terms of the mean survival time or the event rate averaged over the whole follow-up.

- A significant power gain related to the use of a test based on RMSTD compared to the log-rank test when the hazards are non-proportional not evident at all for the considered scenario.
Conclusions – testing procedure choice (1)

• When non-PH
 • The interpretation of the HR complicated
 • Log-rank test may not be the most powerful test
• The impressive power gain of some approaches comes with a cost of testing a wrong H_0 (be careful!)
• For methods based on the correct H_0, power gain (if any!) compared to the log-rank test under non-PH may be small
Conclusions – testing procedure choice (2)

- Restricted mean survival time difference is an attractive alternative to HR when hazards are likely non-proportional
 - Proper control of type I error probability
 - Test-estimation coherency
 - Simple and meaningful interpretation
 - Possibility to condition on stratification factors
 - **Some** power gain for **some** scenarios
Consequences of non-PH effects on study design

Nb Sim= 2000, no censoring
Delay timing = 6 months

- Statistical power is dependent on magnitude of treatment effect
- Small differences between Log-Rand and RMSTD-based test tend to shrink with higher number of patients
Consequences of non-PH effects on study design

- Statistical power is dependent on both **timing of delayed separation** and **magnitude of treatment effect**

Sources: Mick 2015, “Statistical Challenges in the Design of Late-Stage Cancer Immunotherapy Studies”, Cancer Immunology Research
Trial issues – Long term survival

Studies are usually designed on exponential distribution assumption → survival curves will drop down to zero survival probability

New setting with immunotherapies: a subset of patients are expected to be cured

Example: Pegylated Interferon alfa-2b (Sylatron): Relapse-Free Survival – Adjuvant Melanoma

Introduction of the **Cure rate**: % of long-term survival patients among all patients

Mick 2015, “Statistical Challenges in the Design of Late-Stage Cancer Immunotherapy Studies”, Cancer Immunology Research
Consequences of long-term survival

LTS: Long-term Survival Control (Treatment), HR=0.75 after separation, 512 events

The presence of long-term survival would lead to a **prolongation of trial duration**

In reality, cure may occur only in the treatment arm → **over-powered study**

PH: prolongation from 3 to 16 months for cure rate from 5 to 15%

Non-PH: from 3 to 11 months for cure rate from 5% to 15%

Observation: higher cure rate results in a longer time to reach the pre-specified number of events

Sources: Mick 2015, “Statistical Challenges in the Design of Late-Stage Cancer Immunotherapy Studies”, Cancer Immunology Research
Interim analysis – Impact of non-PH/LT data

Accrual rate=20 patients per months; Interim analysis at the information fraction of 50%; design to detect HR=0.75, 2-sided type I error; delayed treatment effect = 3 months; Cure rate = 10% (control) vs 18% (treatment); O’Brien-Flemings boundaries

| Interim stopping probability with long-term survival (10% vs 18%) and delayed clinical effect (3 months) |
|---|-------------|-----------|-----------|-------------|
| | Standard PH model | LT survival | Delay | LT survival & Delay |
| Interim sample size | 520 | 540 | 480 | 500 |
| Number of events | 256 | 256 | 256 | 256 |
| Stopping probability (superiority) | 0.25 | 0.25 | 0.06 | 0.06 |
| Stopping probability (futility) | 0.01 | 0.01 | 0.08 | 0.08 |

Long-term survival: no apparent impact

Delayed treatment effect: high impact

Sources: Chen 2013, “Statistical issues and challenges in immuno-oncology”, Journal for ImmunoTherapy of Cancer
Interim analysis - Warning

Interim analyses should be implemented with caution in immuno-oncology trials

- Waste of resources and/or false conclusions
- Envisage the optimal time-point accounting for all considerations (clinical, statistical and operational)

Warning when:

- **delayed treatment effect:**
 - futility interim → potential misleading negative early effect
 - superiority interim → potential lack of positive effect

- **early treatment effect:**
 - futility interim → potential lack of negative effect
 - superiority interim → potential misleading positive early effect

- Example in a Phase III trial of tremelimumab in metastatic melanoma*:

 Early interim analysis showed no survival benefit → stop for futility
 BUT → extended follow-up showed potential delayed separation of the survival curves (non-significant)

Conclusions – trial design

• Statistical power is dependent of both magnitude and timing of the delayed treatment effect
• Very small differences in power between Log-Rank and RMSTD when modifying the non-PH parameters
• Long-term survival leads to a prolongation of trial duration
• Careful approach of interim analyses (timing, necessity)
• Potential misleading conclusions for:
 • Futility interim analysis when delayed treatment effect
 • Superiority interim analysis when early treatment effect
References

- **Chen 2013**, “Statistical issues and challenges in immuno-oncology”, Journal for ImmunoTherapy of Cancer
- **Mick 2015**, “Statistical Challenges in the Design of Late-Stage Cancer Immunotherapy Studies”, Cancer Immunology Research
- **Royston 2016**, “Augmenting the logrank test in the design of clinical trials in which non-proportional hazards of the treatment effect may be anticipated” BMC Medical Research methodology
- **Seymour 2017**, “iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics”, Lancet Oncol
- **Sit 2016**, “Design and analysis of clinical trials in the presence of delayed treatment effect.”, Statistics in Medicine
- **Xu 2016**, “Designing therapeutic cancer vaccine trials with delayed treatment effect” Statistics in Medicine